access intranet after hours circle-arrow apply blog caret circle arrow close closer look community outreach community outreach contact contact us down arrow facebook lock solid find a provider find a clinical trial find a provider find a researcher find faculty find-a-service how to apply join leadership left arrow locations logo make a gift map location maximize minimize my chart my chart notification hp notification lp next chevron right nxt prev pay your bill play previous quality and safety refer a patient request a speaker request appointment request an appointment residents corner rss search search jobs Asset 65 submit a story idea symptom checker Arrow Circle Up twitter youtube Dino Logo External Link University Logo Color University Logo Solid Health Logo Solid Arrow Right Circle Book Calendar Date Calendar Search Date Diploma Certificate Dollar Circle Donate Envelope Graduation Cap Map Pin Map Search Phone Pills Podcast

2018-2019 Pilot Project Grant Awardees

Stacey DeJong, Ph.D., PT

University of Iowa, Dept. of Physical Therapy and Rehabilitation Science

“Effects of Operant Up-Conditioning of Motor Evoked Potentials on Corticospinal and Spinal Reflex Excitability in People with Wrist Flexor Hypertonia after Stroke”

Paresis after stroke is associated with diminished corticospinal excitability and often results in loss of upper limb function. This study expands the application of operant conditioning by examining whether people with stroke are able to increase wrist flexor motor evoked potentials elicited by transcranial magnetic stimulation. We will quantify the effects of this neuromodulation strategy on cortical representations, spinal reflex excitability, and wrist motor control.

Emily J. Fox, Ph.D., DPT, NCS & David. J. Clark, ScD

University of Florida, Dept. of Physical Therapy and Brooks Rehabilitation and University of Florida, Institute on Aging

“Neuromodulation of Spinal Circuits to Enhance Practice-Related Performance on a Complex Walking Task”

This study evaluates excitatory neuromodulation of the spinal cord during walking to enhance practice-related gains in performance and retention on an obstacle walking task. If transcutaneous direct current stimulation (tsDCS) shows promise for improving practice effects, this study will provide the necessary data and justification for designing intervention trials that use spinal tsDCS an adjuvant to walking rehabilitation. The proposed intervention techniques are low cost and translatable to real-world settings, which enhances the potential impact of this work on the well-being of older adults.

Bernadette Gillick, Ph.D., MSPT, PT

McKnight Land Grant Professor,Department of Rehabilitation Medicine,University of Minnesota Medical School

Comparing Two Montages of Transcranial Direct Current Stimulation in Pediatric Stroke

Neuromodulatory interventions such as tDCS have recently been studied in children with unilateral cerebral palsy to enhance movement function, with many studies applying inhibitory tDCS to the contralesional hemisphere to balance interhemispheric inhibition between hemisphere. However, the optimal tDCS montage to produce changes in cortical excitability has not been thoroughly investigated. Using a single application of tDCS, we willtest the effects of two tDCS montages, cathodal contralesional or anodal ipsilesional, on the cortical excitability after-effects. This research will guide future large clinical intervention trials incorporating tailored applications of non-invasive neuromodulation. Further study information can be found on the University of Minnesota, Department of Rehabilitation Medicine's website.

Dorothea Jenkins, M.D.

Medical University of South Carolina, Pediatrics and Neonatology

Noninvasive Brain Stimulation to Improve Oromotor Function in Neonates

Preterm infants and term infants who suffer birth asphyxia are at high risk for motor problems, such as learning to take feeds by mouth, and may have to have a gastrostomy tube surgically placed into their stomach to be able to feed well enough to go home. Even after significant brain injury, we know that pairing rehabilitative training and brain stimulation increases neuroplasticity by remodeling motor cortex, leading to improved motor skills.As the first application of brain stimulation technology in human neonates, we will simultaneously deliver transcutaneous auricular vagus nerve stimulation with bottle feeding to boost motor cortical plasticity which may lead to better feeding.