access intranet after hours circle-arrow apply blog caret circle arrow close closer look community outreach community outreach contact contact us down arrow facebook lock solid find a provider find a clinical trial find a provider find a researcher find faculty find-a-service how to apply join leadership left arrow locations logo make a gift map location maximize minimize my chart my chart notification hp notification lp next chevron right nxt prev pay your bill play previous quality and safety refer a patient request a speaker request appointment request an appointment residents corner rss search search jobs Asset 65 submit a story idea symptom checker Arrow Circle Up twitter youtube Dino Logo External Link University Logo Color University Logo Solid Health Logo Solid Arrow Right Circle Book Calendar Date Calendar Search Date Diploma Certificate Dollar Circle Donate Envelope Graduation Cap Map Pin Map Search Phone Pills Podcast

College of Graduate Studies | Course Descriptions

Bulletin

ANAT*970. Research. Research. 1-15 var s.h.

ANAT*980. Thesis. 1-15 var s.h

BDSI*700. BDSI Seminar. This course is mandatory for students in Clemson-MUSC Biomedical Data Science and Informatics students. The overall goal of the course is to expose students to a broad range of concepts, theories, methods, and practices in biomedical data science and informatics, and the specific research topics pursued by the faculty in the program. The students will learn to comprehend and present scientific literature in this field. 1 s.h.

BDSI*701. Intro Biomedical Informatics. This is an introductory course to provide students an overview of the biomedical informatics filed.  Students will learn fundamental theories and concepts of bioinformatics, clinical research informatics, health informatics, consumer health informatics, and public health informatics.  Students will learn informatics tools, techniques, and approaches for research and health care. The course is taught by a variety of informatics experts. The course is required for BDSI PhD students and is open to other students interested in understanding of biomedical informatics. No previous informatics or computer science experience is required. 3 s.h

BDSI*702. Biomedical Data Standards. This course introduces students, clinicians, and  public health practitioners to fundamental  principles of data standards and terminologies  and their importance for exchange and meaningful  use of health data and information.  Use of standards and terminologies is critical for interoperability and is required for meaningful use of data, both for primary use (i.e., patient care) as well as secondary use for quality monitoring, public health reporting, decision support, research and analysis. 3 s.h.

BDSI*711. Precision Medicine Informatic. This course will provide an overview of precision medicine informatics with a focus on cancer. We will cover current initiatives and efforts to use health informatics to individualize care. The integration of heterogeneous data sets from different measurements such as the exposure, metabolome, genome, proteome, and other laboratory measurements is central to the goal of treating each patient as an individual in regard to precision treatment. The use of next generation sequencing, transcriptomic and other detailed data sets will move us to more precise characterizations of patients and ultimately more precise treatments. To get there we will need to understand the informatics of big data and learning from high dimensional data sets. As a use case, we will do a detailed examination of precision medicine clinical trials in cancer. We will also examine publicly available data to understand how high throughput measurement techniques are used and the methods that are applied to them to more precisely characterize cohorts of patients. Lastly, we will examine the challenges of precision medicine to explore ways to integrate the approaches into clinical healthcare systems. 3 s.h.

BDSI*712. Translational Informatics. This course will provide an over view of clinical and translational research informatics.  Students taking this course will learn about research data management, relational database design, modern research data capture tools, best practices, clinical data warehousing, security risks and mitigations, privacy issues in electronic data, data standards, data mining and other related topics. Students will get hands-on experience with using modern translational research informatics tools such as REDCap, i2b2 and others

BDSI*721. Applied Machine Learning. This course will provide an introduction to methods in statistical learning that are commonly used to extract important patterns and information from biomedical data. Topics include, linear methods for regression and classification, regularization, kernel smoothing methods, statistical model assessment and selection, and support vector machines. Unsupervised learning techniques such as principal component analysis and generalized principal component analysis will also be discussed. The applications will be illustrated using the statistical programing language.

BDSI*731. Microbiome Informatics. This course is concerned with analysis of microbiome data enabled by high-throughput sequencing technologies. We will briefly cover foundational concepts in microbial ecology, molecular biology, bioinformatics, and DNA sequencing. The main focus of the course will be on developing an understanding of multivariate analysis of microbiome data. Practical skills to be developed in this course include managing high-dimensional and structured data in metagenomics, visualization and representation of high-dimensional data, normalization, filtering, and mixture-model noise modeling of count data, as well as clustering and predictive model building. The topics in this course are developed only as far as to enable the users to understand the merits of these analyses. The main goal is to give the students an intuition about when certain analyses are applicable and practical ways to implement these analyses. A deeper understanding of these methods can be achieved by taking additional classes in statistics such as 'Statistical Methods for Bioinformatics' and 'Multivariate Analysis', which cover a much broader range of topics in more rigorous detail. Objectives:         Familiarity with methodologies upstream informatics processing of microbiome sequencing data; Working knowledge of  statistical programming; Descriptive and ecological analysis of taxonomic abundance tables; Testing hypothesis in multivariate context, multiple testing; Multivariate analysis techniques, testing by permutation; Visualization of microbial communities and associated phenotypic variables; Forming hypotheses and statistically testing them via executing informatics analyses; Understanding, applying, and comparing methods for building predictive models with microbiome data. 2 s.h.

BDSI*970. Research. Students conduct research under the guidance of their mentor. 1-15 var s.h.

BDSI*6410. Intro to Stochastic Models. This course is delivered through Clemson University as (MATH 6410) as part of a joint Biomedical Data Science and Informatics program. This course will cover ideas from Simulation, Discrete-time Markov chains, Poisson processes, and Continuous-time Markov chains. Concepts from probability theory will be reviewed as needed, but you should be comfortable with the majority of the material covered in MATH 4000 before taking this course. This course will have a strong modeling and computational focus, however, you will also be expected to learn how to derive simple facts on your own. 3 s.h.

BDSI*8200. Parallel Architectures. This course is delivered through Clemson University as CPSC 8200 as part of a joint Biomedical Data Science and Informatics program. Parallel computer architectures are ubiquitous today, adopted by all computer systems ranging from mobile devices like cellphones, laptops to data centers. In this course, we examine various parallel architectures, networking, and the programming model that they support. The topics covered in this course include, but are not limited to: Advanced computer architecture: multicore, manycore, heterogeneous architectures, shared memory architectures, distributed memory architectures, computer clusters, and data centers Networking: line, ring, grid, torus, etc. System software: resource management, workload scheduling, data storage, and file systems Programming models: multithreading, message passing, PGAS, MapReduce, CUDA Performance measurement, benchmarking, and analysis. 3 s.h.

BDSI*8310. Fundamentals of Human-Centere. This course is delivered through Clemson University as (HCC 8310) as part of a joint Biomedical Data Science and Informatics program. This course is an introduction to Human-Centered Computing. It is intended for students pursuing a PhD in HCC. The primary objective of this course is to facilitate the acquisition of essential skills for studying and conducting research in Human-Centered Computing. Specifically, the goal of the course is to introduce you to theoretical perspectives in HCC. The goals of the course will be accomplished through the combination of readings, discussions, lectures, projects, assignments, and exercises. Students are encouraged to pursue and discuss their own research interests as part of the course. Because collaboration is critical to successful HCC projects, group work is emphasized. Upon completion of this class you should have the knowledge and skills to enable you to determine an appropriate theoretical frame for your research, identify user needs, designing based on identified human-centered needs, iteratively improve upon your design, build out your design and evaluate your design. 3 s.h.

BDSI*8650. Data Mining. This course is delivered through Clemson University as CPCS 8650 as part of a joint Biomedical Data Science and Informatics program. Data mining has emerged as one of the most exciting and dynamic fields in computer science, bioinformatics, industrial engineering, etc. The driving force for data mining is the available of massive data that potentially contain valuable bits of hidden knowledge. Such data include consumer data, transaction histories, medical records, biological experiments, Web information, Network information, etc.  Commercial enterprises have been quick to recognize the value of data mining; consequently, within the span of a few years, the software market for data mining has expanded to be in excess of tens of billions of dollars. This course is designed to provide graduate students with a broad knowledge in the design and use of data mining algorithms, exposure to data mining research, and hands-on practices in applying these ideas to a real-life situation. 3 s.h.

BDSI*8810. Deep Learning. This course is delivered through Clemson University as CPSC 8810-06 Deep Learning as part of a joint Biomedical Data Science and Informatics program. This is a special topics course in deep learning architectures.

BIOMI*818. Biomed Img Journal Club. In this journal club course students will be required to lead a discussion (approx. 45 min.) on at least one journal article published within the last calendar year covering one or more of the following topics: 1) novel biomedical image acquisition methodology; 2) advances in instrumentation (i.e. multimodality), methodology, or software employed for biomedical image analysis; 3) novel uses of or new imaging biomarkers. The presentation will be followed by a 15 min. question and answer session, and all journal club members will be encouraged to ask questions during the presentation as well. It is expected that, through this format, the student will gain an understanding of both traditional methodology and recent technological advances which are driving the field of biomedical imaging and its applications. This will be assessed by evaluating the student's written critique (through provided journal article worksheets) publications reviewed weekly. 2 s.h.

BIOMI*970. Research. Students conduct research under the guidance of their mentor. 1-15 var s.h.

BMB*607. Biochemistry Journal Club. Current and emerging topics in the biomedical sciences will be presented and discussed in a journal club format. One student per week will lead a group discussion of a faculty-approved article from a high impact journal. All students are expected to read the selected paper in advance of the class and to actively participate in the discussion. Students are expected to attend each class and to present at least one journal article per semester.  All students are expected to actively participate in the discussion.  Grading (P/NP) for presentation and participation will be based on the rubric outlined in the syllabus.  Students who do not participate in the discussion will be given notice that they need to increase their interaction with the group. 1 s.h.

BMB*730. Sem in Biochem Research & Meth. In this series, students give a seminar based on their own research to their fellow students, graduate training committee, thesis committee, faculty and post-doctoral fellows in the Department of Biochemistry. This is a great opportunity for the students to present their work in an informal setting and to receive feedback on his/her studies from a large audience with different scientific backgrounds. Students are required to give at least two seminars during their training. 1 s.h.

BMB*970. Research. Research.  1-15 Variable s.h.

BMB*980. Thesis. Thesis.  Variable 1-15 s.h.

BMTRY*10. Special Topics. This is an introductory course in basic science for MS and PhD students of biostatistics, epidemiology, and bioinformatics. The course is intended for students with minimal biology background as a precursor for CGS 760 Unanswered Questions, CGS 701 Foundations of Biomedical Sciences I, and CGS 702 Foundations of Biomedical Sciences II. The course will emphasize biology as it relates to the daily tasks and communications necessary to function in an interdisciplinary environment.  The student will be awarded 1 credit hour with a pass/fail grade assigned at the completion of the requirements. Requirements include: class attendance and participation in discussions (100%). 1 s.h.

BMTRY*700. Intro to Clin Biostatistics  . This course introduces basic applied descriptive and inferential statistics.  Topics include elementary probability concepts, an introduction to statistical distributions, point and interval estimation, hypothesis testing, and simple linear regression and correlation.  Basic data management and analysis techniques will be introduced using appropriate statistical software packages.  Prerequisites:  College Algebra & at least one course in Calculus. (Required MS, PhD) 4 s.h.

BMTRY*701. Biostatistical Methods II. The objective of this course is to provide basic and intermediate skills necessary to apply regression methods to clinical and basic science research data.  Topics include regression issues such as least squares estimation, hypothesis testing, diagnostics, model building and variable selection, and indicator variables. Simple and multiple linear regression, logistic regression, Poisson regression, and modeling of time-to-event (survival) data will be covered.   The course uses a problem-based approach and applications to clinical and basic science problems are provided. Prerequisites:  BMTRY 700.  4 s.h.

BMTRY*702. Meth IV: Adv ANOVA & Regress. The course covers a variety of intermediate level topics required to complete core competencies for analysis and interpretation of clinical and basic science data. The course emphasizes experimental designs employed in biological and medical research, including randomized block and nested designs, and factorial experiments. Longitudinal data methods including random and mixed effects models, and missing data methods are covered. 4 s.h.

BMTRY*704. Nonparametric Methods in. This course covers levels of measurements, order statistics, statistical methods for independent and correlated samples, distribution-free measures of association and testing.  Students will identify situations where parametric techniques do not apply; to apply nonparametric methods for testing equality of variances; to test goodness of fit of data to a probability distribution; and to analyze one-and two-way layouts with nonparametric multiple comparisons.  3 s.h.

BMTRY*705. Prin. of Comp. & Algorithms. The ultimate goal of this course is to equip the attendant with algorithm identifications and implementation skills as to translate theory development into a computational application.  3 s.h.

BMTRY*706. Theoretical Foundation/Stat I . This course covers basic probability theory, random variables, transformation of random variables, expectation, moments and moment generating functions, discrete and continuous probability distribution functions; joint, marginal, and conditional distribution functions, bivariate normal distribution, and inequalities.  3 s.h.

BMTRY*707. Theoretical Foundation/Stat II. This course is the continuation of Theoretical Foundations of Statistics I.  Topics covered are order statistics, stochastic convergence, point and interval estimation, hypothesis testing, evaluation of estimates and tests, and asymptotic theory.  Prerequisites:  BMTRY 700, 706. 3 s.h.

BMTRY*710. Regress/ANOVA Meth Biol & Med.

BMTRY*711. Analysis of Categorical Data. This course offers a short review of standard measures of association and chi-square methods for binomial and multinomial distributions, followed by several special-purpose two-dimensional techniques.  Other areas covered include the development of maximum likelihood-based inference (unconditional and conditional) for categorical data using generalized linear models. Models for binomial, multinomial and count data will be examined. In addition, topics including log-linear models, analysis of three-dimensional and higher tables, model selection strategies, regression model diagnostics, analysis of correlated or matched data, and generalized estimating equations, will be covered.  Prerequisites:  BMTRY 700, 701, 706. 3 s.h.

BMTRY*712. Sampling Methods in Biology. This course emphasizes estimation of parameters of a finite population from samples drawn with and without replacement.  Simple random samples, cluster and stratified samples, confidence intervals for parameters, ratio estimates, optimal allocation and required sample size are covered. Prerequisites:  BMTRY 700, 706. 3 s.h.

BMTRY*713. Infectious Disease Epidemiolog. This course provides an overview of infectious disease epidemiology with an emphasis on the application of epidemiologic techniques to a variety of diseases.  Lectures, supplemented by video presentations and case studies provide the framework for the course. 3 s.h.

BMTRY*714. Linear Models in Biology & Med. The matrix representation of the general linear statistical model is studied through the implication, distribution, and partitioning of quadratic forms and their probability distributions.  Estimation of parameters in the linear model by methods of maximum likelihood and least squares will be presented along with the accuracy and precision of these estimators. Estimability in both the full rank and less than full rank models is introduced.  The test statistic for the general linear hypothesis is derived, and its distribution is determined under an assumption of normally distributed errors for both the null and a general alternative hypothesis.  Sufficient examples are given to show its application to tests on means as well as in ANOVA and ANOCOVA.  Students prepared in basic statistical methods and theory, and matrix algebra are eligible to take this course.  Prerequisites: BMTRY 700, 706, 707, 710.  3 s.h.

BMTRY*715. Clinical Research Intro. SStudents will learn about the following 1) proteomics, 2)genomic analyses, 3) viral vector core, 4) DNA microarrays, 5) fMRI, 6) 64 slice CT, 7) regenerative medicine, and 9) zebra fish facility. Students will learn the theory behind each of the technologies and will receive practical exposure to them.  Students will be exposed to several types of clinical research over 11 weeks: mechanisms of disease, development of therapeutic interventions and new technologies, clinical trials, epidemiologic clinical studies, health services research, the GCRC, MUSC centers, Misconduct and fraud in clinical research, the IRB, etc.  The will also participate in a brief overview of the medical anthropology course to learn about health problems outside the framework of standard biomedical concepts, exploring ecological, evolutionary, and cultural systems as they impact on health and disease. A second objective is to compare various ethnic groups in terms of their patterns of health and disease, their beliefs about and management of illness and to learn about how health care practice and research must incorporate concepts of health and disease from the perspective of the patient's cultural meaning. Emphasis is placed on vulnerable populations and those experiencing health disparities. Finally, students will learn participant observation and qualitative methods in the clinical field setting. 8 s.h..

BMTRY*717. Stat Meth for Clinical Trials. This course is intended mainly for MS and PhD Students in DBE interested in the statistical methods and issues arising in a variety of clinical trials. The course will include topics in adaptive/flexible study design, adaptive randomization, sample size estimation, missing data handling, interim analysis methods, and issues in data analysis. The course will also cover topics related to the statistician's role in clinical trials, including the presentation of statistical information and statistical monitoring of safety data. At the completion of the course, students will have the tools to collaborate with clinicians in the design and implementation of clinical trials as well as analysis of study data, and will have developed their skills in being more critical readers of the medical literature. 2 s.h.

BMTRY*718. Stochastic Process in Biol/Med. An overview of the role of stochastic processes is followed by review and extension of probability theory, including probability generating functions. The course will cover stochastic processes like random walk, branching processes, Markov processes, renewal theory, and hidden Markov process.  Applications of these processes in genetics, clinical trial design and data analyses, and computer simulations are discussed throughout the course. Prerequisites:  BMTRY 700, 706, 3 s.h.

BMTRY*719. Bayesian Biostatics. It is a graduate course on effective and sophisticated approaches to Bayesian modeling and computation in biostatistics and related fields. The course begins with a gentle introduction of Bayesian inference starting from first principle, but it intends to cover the philosophical backgrounds, logical developments and computational tools associated with Bayesian. Prerequisites: 700, 706, 707, 710. 3 s.h.

BMTRY*720. Basic Biostatistics. 3 s.h.

BMTRY*721. Fund of Statis/Epidem Collabor. Required for all students with emphasis in biostatistics and epidemiology prior to obtaining a masters degree.  Teaches students how to participate in collaborative research including methods for sample size estimation, preparation of plans for statistical analysis and of analytic reports.  Those students in the Ph.D. program who do not have previous collaborative working experience and/or training would also be required to take this course.   2 s.h.

BMTRY*722. Analysis of Survival Data. This is an introductory course in theory and application of analytic methods for time-to-event data.  The methods covered include nonparametric, parametric, and semi-parametric (Cox model) approaches.  The topics covered will also include types of censoring and truncation, sample size and power estimation, and a brief introduction to counting process method.  Extensive use of SAS procedures for survival analysis is incorporated into the course.  Prerequisites:  BMTRY 700, 706, 710, and working knowledge of SAS. 3 s.h.

BMTRY*723. Applied Biostatistics. This course provides a survey of descriptive and inferential statistics commonly used in biomedical research. This course is intended for graduate students in other Basic Science departments and Colleges, clinical residents/fellows, and medical and dental students who seek a working knowledge of biostatistical methods and their applications. Topics include measures of central tendency and variation, frequency distributions, confidence interval estimation, comparison of means and proportions, sample size calculation, simple linear regression and correlation, overview of multiple regression and regression diagnostics, one and two way analysis of variance, chi-square tests, common nonparametric procedures, and an introduction to basic principles of experimental design (completely random and randomized block experimental designs, factorial and repeated measures experiments). Students are expected to be able to design simple experiments, to identify and carry out an appropriate statistical analysis, and to interpret results through statements of both statistical and clinical conclusions. Students also receive instruction in the use of a statistical software package. 3 s.h.

BMTRY*724. Design & Conduct of Clin Trial. This is a comprehensive course providing an overview in the design and conduct of clinical trials. The course covers the types of clinical trials; study design (including sample size estimation); randomization methods and implementation; project and data management; ethics; and issues in data analysis (e.g., intent-to-treat; handling of missing data; interim analyses).  The course is designed primarily for the students in the Department of Biostatistics, Bioinformatics, and Epidemiology; however, both clinical and basic science investigators can benefit from this course provided they have the required background in basic statistics.  Prerequisites:  BMTRY 700. 3 s.h.

BMTRY*725. Grant Develop - CLin Research . This course is required for participants in the Clinical Masters program and Ph.D. students in the Department of Biometry and Epidemiology. The objective of the course is to prepare a grant application (R03, F31, K-award, etc.) for submission to a funding agency. Students learn grantsmanship, develop the sections of a grant (aims, background, preliminary studies, and methods), learn about IRB regulations and procedures, about ethics, and develop an IRB application. They also develop a research budget.  Students will be given examples of successful grants and grants that have not been funded to discuss. Students should come to the course with a research idea that can be developed into a grant and, if possible, with preliminary data. Prerequisites:  700, 710, 736 or permission of instructor. 2 s.h.

BMTRY*726. Multivariate Methods in. This course will consist of multivariate techniques in biology and medicine including multivariate tests of mean vectors and covariance matrices, multivariate analysis of variance and regression, repeated measures analysis, random and mixed effects models, generalized estimating equations, generalized linear mixed models, canonical correlation, factor analysis, principal components analysis, discriminant analysis. Directed to biostatistics students; useful for epidemiology students.  Prerequisites:  BMTRY 702, 706, 710, Knowledge of Matrix Algebra & SAS. 3 s.h.

BMTRY*727. Clinical Research Grant Pract. This course is a required follow up course to 147Clinical Research Grants148 and will provide the student with the opportunity to actually develop a clinical research grant proposal in the format of an NIH grant.  This course will include guest speakers who have served as grant reviewers as well as successful grant awardees. Prerequisites:  BMTRY 700, 710, 736, 725 or Permission of Instructor. 2 s.h.

BMTRY*728. Contemp Topic in Clin Research. The need to create specialized methods to conduct clinical research brings unique challenges to the investigator. This course will focus on contemporary research study designs and techniques for application in patient populations. It is directed towards any student who may be involved with research in patient populations. 1 s.h.

BMTRY*731. Critical Rev of Clin Research. This course provides an overview of the salient methods of infectious disease epidemiology with an emphasis on the application of epidemiologic techniques to various diseases caused by a microbial agent. Specifically the course emphasizes the contributions of individual, environmental, and sociodemographic factors in the occurrence of infectious disease in a population. Lectures will describe the role of biological, environmental, social, and behavioral factors in determining the transmission of infectious diseases and their prevention. The course employs common statistical tests and epidemiological techniques to assess the transmission index of infectious agents. 2 s.h.

BMTRY*732. Intro to Decision Analysis. This course is focused on the interpretation and translation of data interpretation through integrative models as a tool for improving evidence-based decision making in health care settings. Topics include: clinical decisions and decision analysis, policy analysis approaches, expected value, contingent probabilities and uncertainty, utility assessment, decision trees, Markov, Monte Carlo  and simulation models in decision analysis, cost-effectiveness analysis, and sensitivity analysis.  The course is designed primarily for the student in a health-related discipline who desires a greater understanding of conduct and interpretations of decision analysis and cost-effectiveness analysis.  A paper analyzing a clinical or policy problem using a decision model is required. Prerequisites:  BMTRY 700, 710, 736, or permission of instructor, 3 s.h.

BMTRY*733. Intro to Hlth Serv Research. This course is designed primarily for the student in a health related discipline who desires a greater understanding of how to conduct and interpret health service research. This course is focused on empirical measurement and interpretation of data in health services research. Topics include: conceptual frameworks for health services research (health behavior, organizational theory, economic, or public policy-based approaches) current issues in health services research (effectiveness, cost, or quality of care, and access to care), methods for health services research (observational studies, process improvement, experimental, and quasi-experimental designs) and health services research data sources (primary data collection and use of archival data sources). Prerequisites:  None. 3 s.h.

BMTRY*734. Cancer Epidemiology. This survey course will introduce students to the major cancer risk factors.  For the major cancers the most important epidemiological studies will be reviewed.  The issue of genetic susceptibility and the use of biomarkers in cancer epidemiology will be studied as well as cancer screening. 3 s.h.

BMTRY*736. Foundations of Epidemiology. This course provides an introduction to basic epidemiologic principles including measurements of disease occurrence, study designs (cohort, case-control, randomized clinical trials) and calculation of risk.  Lecture material is supplemented with exercises and discussion of examples from the epidemiologic literature and presentations of epidemiologic studies by guest speakers. Prerequisites:  None. (Required MS and PhD). 3 s.h.

BMTRY*737. Epidemiology of Cardiovascular. This is an advanced course designed to acquaint students with the use of epidemiology in the study and investigation of cardiovascular diseases. Prerequisites:  BMTRY 736 or permission of instructor. 3 s.h.

BMTRY*738. Field Epidemiology. An emphasis will be placed on procedures used in the implementation of epidemiological research studies.  Prerequisites:  BMTRY 736 or permission of instructor. 3 s.h.

BMTRY*743. Contemporary Topics in Cr II. The need to create specialized methods to conduct clinical research brings unique challenges to the investigator.  This course will focus on contemporary research study designs and techniques for application in patient populations.  It is directed towards any student who may be involved with research in patient populations.  1 s.h.

BMTRY*744. Introduction to Bioinformatics. The course gives a comprehensive entry-level introduction to bioinformatics.  It covers a wide variety of topics in bioinformatics, including sequence analysis, protein structure prediction, gene prediction, genome analysis, proteomics data analysis, database, transcription profiling, etc. This course is designed to provide a broad foundation in bioinformatics for advanced courses. A biology background is helpful, but not essential for this class.  Students without a biology background may wish to attend one or two sessions reviewing biology outside the class, which are currently provided by the instructor. 2 s.h.

BMTRY*745. Environmental Epidemiology. The field of Environmental Epidemiology encompasses the investigation of environmental factors and how they affect human health. Environmental epidemiologists study health effects in populations resulting from exposure to physical, chemical, and biological agents. This includes the contribution of social, economic, and cultural factors that are related to these exposures. Occupational Epidemiology provides an introduction to clinical and epidemiologic aspects of occupational health and recognition and prevention of occupational diseases and injury. Case study approaches are used to learn about epidemiologic applications to occupational health. This course helps to address some of the 15 learning competencies of the doctoral program in Epidemiology and is intended for advanced epidemiology students to become familiar with applications of epidemiology to environmental and occupational problems. 3 s.h.

BMTRY*747. Foundations of Epidemiology II. This course will provide a comprehensive and quantitative view of the design, conduct, analysis, and interpretation of epidemiological studies and use of EGRET software.  There is a more in-depth coverage of topics than in Epi I. Prerequisites:  BMTRY 700, 710 concurrently. 3 s.h.

BMTRY*748. Foundation of Epidemiology III. This course will provide an in-depth quantitative view of advanced statistical analysis of epidemiological studies.  The use of epidemiological analysis software (Epicure) will be taught. Builds on techniques developed in Epi II.  Prerequisites:  BMTRY 700, 710, 747. 3 s.h.

BMTRY*749. Epidemiology of Diabetes. 3 s.h.

BMTRY*755. Regression Meth for Clin Rsch. This course will equip students with the skills to choose appropriate methods, models, and hypothesis tests for data analysis related to linear regression, and analysis of variance, logistic regression, and survival analysis.  For each method, students will learn technique to check model assumptions, conduct diagnostics, assess fit, and interpret results. 4 s.h.

BMTRY*757. Molecular Epidemiology. This course introduces students to the principles and practices of molecular epidemiology and provides an overview of the application of biologic markers of exposure, disease or susceptibility to epidemiologic investigations of exposure-disease relationships. Students will be guided through general principles that draw on issues of validity and reliability, technical variability and control, biologic specimen banks with a strong emphasis on study design and how to incorporate biomarker studies into epidemiology practice. 3 s.h.

BMTRY*759. Health Disparities. The need for a public health workforce trained in equity-based approaches to social determinants of health has increased and is driven by a significant body of literature. In this course, students will learn principles and concepts of health equity and social determinants of health and relevant models and methodological issues in social epidemiologic research.3 s.h.

BMTRY*760. Models in Biology & Medicine. The course introduces the student to a representative set of models that elucidate the nature of biological and medical phenomena.  Upon completion of the course, the student will understand the rationale behind the models, explore their potential and limits, and execute standard analyses and simulations.  Examples that are discussed include classical models, such as biochemical system models and parasite-host models, as well as modern models taken from the current literature.  Prerequisites:  BMTRY 700, and Introduction to Bioinformatics. 3 s.h.

BMTRY*761. Longitudinal Data Analysis. This course introduces students to the analysis of longitudinal data collected on individuals over time. Topics will include linear models for panel data, restricted maximum likelihood, choice of covariance structure, linear and generalized linear mixed effects models, marginal models and GEE, penalized quasi-likelihood, missing data and dropout. Pre-requisites: Biometry 701, Biometry 707.3 s.h.

BMTRY*763. Spatial Epi Stat Meth and Appl. This course focuses on the basic epidemiological and statistical issues to be found in the study of the spatial/geographical distribution of disease. The topics of disease mapping, disease clustering and ecological analysis will be examined.3 s.h.

BMTRY*764. Stat Computing for Rese. Students learn to use the primary statistical software packages (SAS, R, Stata), principles of data management, and scientific document preparation. 3 s.h.

BMTRY*765. Chronic Disease Epidemiology. Examination of chronic disease from an epidemiologic perspective, with an emphasis on methodological and practical issues of study designs, exposure and outcome assessment, factors determining the distribution of selected chronic diseases and critical review of relevant epidemiologic literature. Students are introduced to disease registries, their purpose, benefits and limitations. 3 s.h.

BMTRY*766. Meth/Outcome in Cancer Pop Sci. The objectives of the Methods and Outcomes in Cancer Population Sciences is to increase the knowledge and skills of early stage clinicians and basic science researchers in conducting patient oriented and translational cancer research.  3 s.h.

BMTRY*775. Biochemical Systems Analysis. The course introduces students interested in bioinformatics to the computational analysis of biochemical systems.  It briefly reviews traditional concepts of enzyme catalyzed reactions, but places its main emphasis on modern methods of biochemical systems analysis with algebraic and computational means.  The course discusses alternative modeling approaches, the design of pathway models, parameter estimation, steady states and stability, sensitivity and gain analysis, numerical evaluations of transients, phase-plane analysis, and the simulation of biomedically relevant scenarios.  The theoretical concepts are applied in comprehensive case studies. 3 s.h.

BMTRY*776. Public Health Seminar. Public Health Seminar is a required course for Biostatistics and Epidemiology PhD and MS students in the Department of Public Health Sciences (DPHS), to be completed in the fall and spring semesters of the student's first year in the program. Students attend DPHS-sponsored seminars every other Monday throughout the semester to gain exposure to contemporary research topics in biostatistics and epidemiology. Seminar speakers are invited guests to the department and represent a diversity of research topics that are complementary to the research interest of DPHS faculty. On alternating Mondays, the department sponsors its own Brown Bag seminar series featuring research presentations by DPHS faculty and advanced students actively engaged in mentored projects. This valuable exposure helps first-year students identify potential mentors and projects for summer research hours, as well as possible dissertation advisors and research topics. 1 s.h.

BMTRY*777. Cancer Health Equity Research. In this 14-week, 15-credit hour course compromising six modules, students will receive didactic instruction, one hour per day, from national leaders in cancer research who collectively will present state-of-the-art cancer information across multiple perspectives - basic sciences, clinical sciences, and population sciences with an emphasis on disparate outcomes in breast, prostate, head/neck, and cervical cancer. Students will also spend 30 hours per week working in the research laboratories/offices of their mentors. 15 s.h.

BMTRY*779. Advanced Inference. This course is intended for Ph.D. students in Biostatistics. The course will begin with a review of basic mathematical concepts: probability and measure, integration, modes of convergence. A decision theoretical approach to statistical inference will be introduced. In statistical estimation theory, topics such as families of distributions, point estimation, unbiasedness, algorithmic issues, etc. will be included. In hypothesis testing the Neyman-Pearson theory, unbiased tests, permutation tests, and likelihood based tests will be discussed in depth. In asymptotics, limit theorems, relative efficiency, Wald's statistic, Rao's score statistic, etc., will be discussed. An overview of robust statistical procedures will be provided.  Prerequisite: BMTRY 707 Theoretical Foundations of Statistics II (3). 4 s.h.

BMTRY*781. Methods in Clinical Cancer Res. Lectures will cover the following areas in oncology research: (1) clinical and statistical design of phase I, II and III trials; (2) incorporation of correlative and biomarkers in clinical trials, (3) considerations in chemotherapy, surgery, radiation and multimodality trials, (4) quality of life and other patient reported outcomes in cancer research, (5) the protocol review and IRB process, (6) informed consent, (7) data collection, trial monitoring and investigator responsibilities, (8) the grants process and mentoring. In addition to the didactic portions of the training, each trainee will have a clinical research proposal which will be developed into a letter of intent (LOI) for a clinical trial. Other contact hours will take the form of a journal club where clinical research papers from journals such as Clinical Cancer Research or Journal of Clinical Oncology are discussed, and protocols that are being undertaken at HCC are reviewed and discussed. Students will be required to attend and take part in the HCC Protocol Review Committee's monthly meetings. 2 s.h

BMTRY*783. Stat Methods for Bioinformatic. This course will provide a survey of bioinformatics research areas and statistical methods needed to analyze data in these areas. This course will introduce students to biological concepts and statistical problems in various bioinformatics research areas, including functional genomics and cancer genomics. Statistical methods, such as multiple testing, clustering, classification, and high dimensional data analysis, will be discussed to address statistical problems in these research areas. Freeware and online resources related to these topics will be explored. 2 s.h.

BMTRY*784. Biostatistical Methods III. This course is intended for biostatistics MPH and Epidemiology PhD and MS students interested in applied statistical methods for analysis of categorical and correlated data. The categorical data analysis sessions include methods for stratified 2x2 and r x c contingency table data, ordinal data, matched pair dichotomous data, and count data. The correlated data analysis section covers random and mixed effects models and generalized linear mixed models. The didactic classes are augmented by SAS and R sessions led by the TA's. At the completion of this course, students will have the tools to analyze these data using SAS and R, and make appropriate inferences from the analyses. Prerequisites: BMTRY 700, BMTRY 701 and Probability and Statistical Inference. 3 s.h.

BMTRY*785. Probability & Stat Inference. This one-semester course provides an introduction to fundamental principles of probability and inference including: laws of probability, discrete and continuous random variables and their probability distributions, select multivariate probability distributions, sampling distributions and the central limit theorem, point and interval estimation including maximum likelihood, an overview of the hypothesis testing framework, and common hypothesis tests including the likelihood ratio, Wald, and score tests. Prerequisites: At least one semester of Calculus. 3 s.h.

BMTRY*789. St: Topics in Bio & Epi. Special Topics in Biostatistics, Bioinformatics, and Epidemiology. Var 1-15 s.h.

BMTRY*790. Machine Learning & Data Mining. Machine learning is the interdisciplinary field at the intersection of statistics and computer science which develops such statistical models and interweaves them with computer algorithms. This course provides an introduction to the theory with a basis in real-world application, focusing on statistical and computational aspects of data analysis. It is designed to serve as an introduction to the fundamental concepts, techniques and algorithms of machine learning. The course will cover following topics: data representation, feature extraction, dimension reduction, supervised and unsupervised classification, support vector machines, latent variable models and clustering, and model selection. During the course of discussion, a main thread of probabilistic models will be used to integrate different statistical learning and inference techniques, including MLE, Bayesian parameter estimation, information-theory-based learning, EM algorithm, and variational methods. Prerequisites: BMTRY 706, BMTRY 701/702.3 s.h.

BMTRY*970. Research.   Research. 1-15 var s.h.

BMTRY*980. Thesis. Thesis.1-15 var s.h.

BSC*700. Histology. This is an online course in histology that involves learning the microscopic architecture and function of cells, tissues and organs of the human body. The course content is presented via interactive lectures and virtual labs. A unique feature of this course is the use of virtual microscopy to examine specimens over the Internet using a browser interface instead of a microscope. Learning is facilitated by practice quizzes and assessed by both open- and closed-book examinations. 4 s.h.

BSC*702. Anatomy. This intensive gross anatomy course is designed to prepare students for entry in the field of health professions in general, with a focus and emphasis on medical and dental curricula in particular. The course provides students with a detailed examination of all structural aspects of the human body with a special emphasis on the anatomy and anatomical relationships significant to common clinical medicine topics and surgical procedures. It is presented by regions through lectures and matching online laboratories. The material is organized in units and presented in a logical fasion, i.e. Superficial Back and Upper Limb, Thorax, Abdomen and Pelvis, Lower Limb and finally Head and Neck. Throughout the course, imaging techniques including CT scans and x-ray radiography are used to introduce the student to the clinician's perspective. The course content is also designed to correlate with important clinical problems that students may encounter as practitioners, and additional reading assignments are included in the material to be studied by the students. The students also have the opportunity to further their knowledge of anatomy by using online resources that will be made available to them through a course management system. 4 s.h.

BSC*704. Standardized Test Prep. Students will work with tutors and MCAT or DAT preparation books to practice the various sections of each test. Students will be given the opportunity to take practice tests online. Assessment will be on attendance and participation. 3 s.h.

BSC*706. Professional Development. Students attend weekly 1 hour workshops led by various faculty members on writing personal statement for applications, writing resumes and CVs, interviewing skills, professional etiquette, and how to get the most out of clinical shadowing experiences. Mock interviews and critiques of draft resumes and personal statements will be provided. Students will develop a professional portfolio that can serve as the basis for applications to professional schools. Assessment will be based on attendance and participation. 1 s.h.

BSC*708. Grand Rounds. Each student attends a minimum of 10 Grand Rounds seminars over the semester, from at least three different disciplines (e.g. Medicine, Surgery, Pediatrics, Psychiatry). For each Grand Rounds attended, the student must submit an original 1 page report describing what they learned for credit. The reports and course are graded pass/fail/honors. 1 s.h.

BSC*710. Clinical Exposures. Students will have the opportunity to shadow a physician working in the MUSC Emergency Department and/or the autopsy service. The students will attend the clinic during the semester and write up the history of the patient and the diagnosis and treatment plan. 1 s.h.

BSC*712. Comprehensive Biochemistry. An in-depth course emphasizing the basic metabolic reactions of living systems. Topics which are emphasized include, structure-function relationship of hemoglobin, myoglobin and enzymes, pH considerations, enzymatic activity and factors such as allosteric effectors and conversion of proenzymes to active enzymes, which affect enzymatic activity the biosynthesis (anabolism) and degradation (catabolism) of amino acids, proteins, carbohydrates, lipids, polysaccharides and nucleic acids. Topics which are covered in depth include pH and buffers, glycolysis, the citric acid cycle, the pentose phosphate pathway, glycogen metabolism,regulation of metabolism, the nature of genetic material and the relationship of the genetic code to protein synthesis. An introduction to genetic engineering, genetic diseases and chemotherapy is also presented.3 s.h.

BSC*714. Oral Immunobiology. This course introduces the basic and clinical concepts of immunology, with an emphasis on oral biology. Students who pass this course will understand how the immune system works in health, and how its dysfunction causes or contributes to disease. Topics covered in this course include fundamentals of adaptive and innate immunity, immune regulation, immunization, and transplantation biology and tumor immunology. Disorders such as hypersensitivity, graft rejection, graft-versus-host disease, and autoimmunity are introduced as well as the drugs used to treat these diseases. The impact of the human microbiome on health and disease is also discussed. The course grade is based on four written exams and evidence-based medicine assignment. 4 s.h.

BSC*716. Medical Microbiology. This course will foster a knowledge base and understanding of the fundamentals of bacterial physiology and genetics; clinical bacteriology, virology, parasitology and mycology; antimicrobial therapy; and infection control. The primary goals of the course are to explore the relationship between the physiology of medically important microbes to the pathobiological sequelae of human-microbial interactions, with particular reference to the role of microbes in human disease. In addition to lecture, instruction includes problem based, small group exercises in microbiology with clinical case scenarios. The course grade will be based on 3 multiple choice question exams, in-class quizzes, small group laboratory write-ups, and an evidence based decision making paper (PICO) on an infectious disease question of their choice. 4 s.h.

BSC*718. Special Topics in Healthcare. This course introduces pre-professional students to the analytical methods, resources, and approaches to quality improvement analyses in health care using a realistic case-based study. 2 s.h.

BSC*720. Fund. of Biochem. & Molecular. The course presents core concepts of biochemistry and molecular biology to pre-medical and pre-dental Master's program students.  It is divided into four separate modules. In the first module, basic principles of biochemistry will be introduced. In the second and third modules, an in-depth discussion of key metabolic pathways will be presented. Finally, the fourth module will cover essential aspects of molecular biology and advances in biotechnology.

BSC*750. Caring for the Community. Caring for the Community. Caring for the Community is an interprofessional course aimed at exposing students to the social and financial resources available within the Charleston area to our patients, in particular those who are uninsured or under-insured. Discussions, debates, panels and small group activities will serve to increase our knowledge as providers, and to better serve our patient population in regard to addressing all of their needs, beyond medical needs only. Topics addressed will include health disparities, population health and cultural factors affecting delivery of healthcare, social determinants of health and community resources. All students enrolled in IP-700 will preferentially be afforded opportunities to rotate through the CARES medical clinic as well as shadowing opportunities in the CARES PT/OT clinic, the ECCO Dental clinics and joint Low Country Food bank-CARES clinic events. 2 s.h.

BSC*970. Research. Research 1-15 var s.h.

CELL*609G. Medical Histology/Embryology. 8 s.h.

CELL*609. Cell Biology & Histology. This course presents the microscopic architecture of the adult human body at two levels: the building block of tissues - the cell; and the histological organization of cells into the four distinct tissues of the body.  Two major goals of the course are: 1) that the student will gain a working knowledge of the cell and all it's organelles in order to better understand physiology, pathology, pharmacology and biochemistry; and 2) that a level of knowledge will be achieved so that the student will be able to understand how the uniqueness of the cell is translated into the specific functions of all the organs of the body. 8 s.h.

CELL*610. Anatomical Basis of Medicine. Provides the student with a good understanding of the structure and function of the human body and a three dimensional concept of its parts. The clinical importance of the study of anatomy is stressed. Presentation: lectures (mostly on basic anatomy, but also on radiographic and clinical anatomy) and laboratory study (cadaver dissection and study of cross sections, prosections, skeletal material, models, and radiological images). The body is studied by regions rather than by systems. Prerequisite: enrollment in the M.D. degree program. 8 s.h.

CELL*621. Gross & Neuroanatomy. Emphasizes normal human gross anatomy from the functional point of view. Special emphasis is given to the head and neck. The material is presented in a number of ways: by regional dissections, by study of normal radiograms, and by lectures, outside readings, and textbook assignments. Presents basic concepts of central nervous system organization. The neuronal connections of the various systems and the morphologic relationships of the component parts of the brain are studied in detail. Functional and clinical correlations for the face and oral cavity are stressed. 8 s.h.

CELL*622. Gross & Neuroanatomy. Emphasizes normal human gross anatomy from the functional point of view. Special emphasis is given to the head and neck. The material is presented in a number of ways: by regional dissections, by study of normal radiograms, and by lectures, outside readings, and textbook assignments. Presents basic concepts of central nervous system organization. The neuronal connections of the various systems and the morphologic relationships of the component parts of the brain are studied in detail. Functional and clinical correlations for the face and oral cavity are stressed. 8 s.h.

CELL*628. Basic & Oral Histology. Develops knowledge of the structure and function of cell organelles and the histological features of the organization of cells into the four fundamental tissues, the microanatomy of the integument, oral cavity, and all organs of the body, and the development of the embryo from fertilization through the formation of organ systems. Special emphasis is given to the oral cavity, the special histology and development of the tooth, and the development of the head and neck. This course is primarily intended for dental students, although it is suitable for graduate students and certain health professions students who have a college equivalent education. 8 s.h.

CELL*764. Topics in Cell Biology. Specific sub disciplines in cell biology are reviewed in-depth. The current literature in the field is read and carefully critiqued by the students and presented by them for discussion. Possible alternatives in interpretation of data are offered, as well as the design of experiments which would help to clarify the research problem. .5-15 var s.h.

CGS*610. Anatomical Basis of Medicine. A study of the structure and function of the human body and the three dimensional concepts of the relationships of its components.  The course is regionally based (rather than system based). Lectures are presented on basic anatomy as well as radiographic and clinical anatomy.  Laboratory study includes cadaver dissection by students and study of cross sections, prosections, skeletal material, models and radiographic images.  The course emphasizes the clinical importance of the study of anatomy. 8 s.h.

CGS*621. Gross & Neuroanatomy. Emphasizes normal human gross anatomy from the functional point of view. Special emphasis is given to the head and neck. The material is presented in a number of ways: by regional dissections, by study of normal radiograms, and by lectures, outside readings, and textbook assignments. Presents basic concepts of central nervous system organization. The neuronal connections of the various systems and the morphologic relationships of the component parts of the brain are studied in detail. Functional and clinical correlations for the face and oral cavity are stressed. 8 s.h.

CGS*700. Intro to Biostatistics. This course provides a descriptive and inferential statistics commonly used in biomedical research. Topics include elementary probability theory, and introduction to statistical distributions, point and interval estimation, hypothesis testing, regression and correlations. The course is intended for graduate students in the basic and clinical sciences, clinical residents/fellows, and medical and dental students who seek a working knowledge of biostatistical methods and their applications. 4 s.h.

CGS*701. Foundations of Biomedical Sci. Foundations of Biomedical Sciences is a one-semester course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into five Units (Proteins and Proteomics, Nucleic Acids, Metabolic Networks, Cellular Functions, and Receptors and Signaling), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams. 12 s.h.

CGS*701M. Metabolism and Bioenergetics. Foundations of Biomedical Sciences is a one-semester 10 credit hr course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into five Units (Proteins and Proteomics, Nucleic Acids, Metabolic Networks, Cellular Functions, and Receptors and Signaling), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams.2 s.h.

CGS*701J. Genetics and Genomics. Foundations of Biomedical Sciences is a one-semester 10 credit hr course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into five Units (Proteins and Proteomics, Nucleic Acids, Metabolic Networks, Cellular Functions, and Receptors and Signaling), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams.2 s.h.

CGS*702K. Human Physiology. Foundations of Biomedical Sciences is a one-semester 7 credit hr course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into four Units (Regulation of Gene Expression, Genetics and Genomics, Cell Injury and Response, and Systems Biology), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams. 2 s.h.

CGS*702I. Cell Injury and Response. Foundations of Biomedical Sciences is a one-semester 7 credit hr course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into four Units (Regulation of Gene Expression, Genetics and Genomics, Cell Injury and Response, and Systems Biology), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams. Drs. Smolka and Wolff and various faculty

CGS*702. Foundations of Biomed. Sci II. Foundations of Biomedical Sciences is a one-semester course addressing the basic molecular and cellular mechanisms of biology. Course content is divided into three Units (Regulation of Gene Expression, Genetics and Genomics, Cell Injury and Response, and Systems Biology), and is covered in lectures, tutorial discussions of lectures, journal articles and experimental techniques. In-Unit written assignments account for 50% of semester grade; the balance of the grade derives from mid-term and final exams. 6 s.h.

CGS*712. Essential Sci Practices III. Essential Scientific Practices III is a course centered on the writing of a research proposal.  This course promotes effective scientific writing skills, encourages early student: mentor interaction, and introduces the mechanics of the extramural funding process. Students serve as peer reviewers of each other146s writing. Faculty facilitate small group discussions of student proposals, promoting an open interchange of ideas and constructive criticism. The course grade derives from completion of the research proposal and participation in tutorial discussions of student writing.   2 s.h

CGS*714. Core Clinical Research Train. This course prepares participants to coordinate cost-effective health care research which protects the rights and safety of human subjects. The course is offered on-line and is required of all TL1 trainees. TL1 trainees will be required to take the course sometime during their first year in the program. 1 s.h.

CGS*716. Translational Medicine Seminar. Trainees will present a clinical case that will be followed by a research discussion by a physician-scientist. 1 s.h.

CGS*720. Laboratory Rotation. First Year Curriculum Ph.D. students are required to enroll in three 9 week laboratory rotations spanning the Fall and Spring semesters. All students will rotate through three different laboratories to maximize their exposure to a diversity of mentors, scientific experiences and technologies. Students are urged to attend the seminars and journal clubs of the program in which they are participating in order to get a better sense of where they might be most comfortable during their thesis work. 4 s.h.

CGS*721. Laboratory Rotations. First Year Curriculum Ph.D. students are required to enroll in three 9 week laboratory rotations spanning the Fall and Spring semesters. All students will rotate through three different laboratories to maximize their exposure to a diversity of mentors, scientific experiences and technologies. Students are urged to attend the seminars and journal clubs of the program in which they are participating in order to get a better sense of where they might be most comfortable during their thesis work. 4 s.h.

CGS*723. Research Experience. Laboratory experience: This is a 10 week summer course that provides professional students with the opportunity to work with a faculty member on a funded research project and acquaints the students with an area of specialized research currently under investigation in the faculty member's laboratory. The course will provide hands on experience with many research skills, which may include subject recruitment, outcome testing, data entry, analysis, cell and molecular biology techniques, to name just a few. During the training period the students will receive a structured overview of important research areas in the biological sciences and participate in discussion of the ethical conduct of research. The course is 10 weeks in length, minimum of 40 hours per week. Included in the 40 hours is attendance each week at required 1-hour seminars. The student's personal goals and interests are identified and linked with those of their faculty mentor in this interactive experience. At the conclusion of the training period students are required to: 1.Prepare a brief written paper    a. The paper should be written as a scientific paper that could be potentially publishable. 2. Give an oral presentation on their project.    a. The oral presentation is for 10 minutes with 5 minutes for discussion. 3. They are required to present their research at the annual campus wide student research day. Their grade is based upon the above 3 requirements in addition to attendance at the required seminar series, didactic courses required by training grants or mentor and their overall performance in the didactic course and in the laboratory. 15 s.h.

CGS*725. Teaching Techniques I. The primary objective of this class is to provide an opportunity for graduate and post-graduate students to learn basic teaching and evaluation techniques, as well as presentation skills. Whether presenting research at national or international meetings, or teaching in a formal classroom, teaching and presentation skills are necessary for most professional careers. 2 s.h.

CGS*727. Designing Rigorous Research. This course is designed for pre and postdoctoral trainees and K scholars to learn the principles of rigor and reproducibility in research design and methodology. 1 s.h.

CGS*729. Biomedical Commercial. The course provides students with the opportunity for hand-on work with Charleston Innovation Center Companies or with medical commercialization efforts that take place even before a new firm is founded. 3 s.h.

CGS*732. Cancer:invasion & Metastasis. The goal of this 5 week course is to provide an in depth review of the topic: Cancer: Invasion and Metastasis. This course highlights central mechanisms contributing to tumor cell invasion and metastasis. Although cancer is a complex, multi-faceted process, tumor cells possessing invasive and metastatic properties are thought to play a major role in disease progression and lethality. This course will highlight some of the cell-autonomous molecular mechanisms known to support this behavior, as well as contributions from the extracellular matrix. Important topics also include tumor cell homing to specific sites, tumor cell heterogeneity, and the myriad changes within the tumor microenvironment that may enhance tumor progression.  Prerequisite: Completion of 1st year curriculum. 1 s.h.

CGS*735. Molecular Approaches. This course was developed for the masters in clinical research program.4 s.h.

CGS*737. The Human Microbiome. This course gives students an understanding of the microbial communities in and on humans. This includes the different roles of the communities in the well being of humans and links to important human diseases like allergy, obesity, and diabetes. Students will obtain detailed knowledge on the different microorganisms shaping the microbiome of key human body sites. Students will also be given foundation knowledge on current methodology used for the analysis of microbial community data generated by next-generation sequencing technologies.1 s.h.

CGS*742. Intro to Clinical Oncology. The Introduction to Multidisciplinary Clinical Oncology course will utilize lectures and clinical observer activities to acquaint the trainee with the field of clinical oncology. No prior clinical training is required, but a basic knowledge of cancer biology is assumed. 3 s.h.

CGS*743. Cancer Cell Signaling. The basic Hallmarks of Cancer defined as sustained proliferative signaling, evasion of growth suppressors, resisting cell death, avoiding immune destruction, enabling immortality, invasion and metastasis, and deregulation of cellular energetics are all driven by protein-to-protein signaling. This course will discuss broad discoveries that have shaped the field of cancer cell signaling and provide an overview for how these signaling processes pertain to modern cancer research. This course is offered to students that have successfully passed first year courses. 1 s.h.

CGS*745. Graduate Teaching Internship. MUSC graduate students (max 3/term per location) will intern with the College of Charleston  Program in Neuroscience (coordinator: Dr. McGinty) or the Citadel Dept of Biology faculty (coordinator: Dr. Bacro) over a full semester. The student will need to fill out the CGS 745 application form to be placed as an intern at one of the two locations. Unless agreed otherwise with their coordinators, students will commit to attend the lectures/laboratories and prepare up to 2 student directed sessions. Students will plan, execute, and evaluate each session, and will prepare at the end of the course a reflective report and a plan for the next term's syllabus. 2 s.h.

CGS*750. Statistics. Introduction to the concepts of experimental design and data analysis. 1 s.h.

CGS*752. Frontiers in Stem Cells. This course give students an understanding of the role that stem cells have in human health and disease. This includes the roles and applications of pluripotent stem cells and adult stems in development and disease. Students will obtain detailed knowledge on the different ways that stem cells are utilized by our body naturally as well as how one can harness the power of stem cells in regeneration of tissues as well as in the treatment of diseases. During the course, students will also gain an understanding for the various techniques and current methodology used for the analysis of stem cell function. Additionally, students will learn about potential ethical issues regarding stem cell usage.  Prerequisite: 1st year core curriculum. 1 s.h.

CGS*756. Integrated Interprofes Studies. Integrated Interprofessional Studies is a 3 credit hr course designed to give students an appreciation for the translational relevance of their dissertation studies through hands-on interprofessional experiences in a clinical setting. Students will select the department that best matches their dissertation work and attend available grand rounds, fellows conferences, departmental seminars, clinical discussion groups (boards), and other available small group conferences or settings within the selected department. Experiences in these activities will be discussed in class. Midway through the semester students will also have the opportunity to attend rounding with the corresponding departmental healthcare team as they visit patients. Students reconvene weekly as a class, with the course instructor, to review and discuss cases they have heard and share their experiences. 3 s.h.

CGS*760. Important Unanswered Questions. This is a seminar series. There is a lecture by a faculty member or invited speaker. The students have 2 weeks in which to turn in a paper based on the seminar and propose a hypothesis, specific aims, background and rational. 1 s.h.

CGS*761. Summer Laboratory Observation. Acquaints students with an area of specialized research currently under investigation in a faculty member's laboratory.  This course is for students enrolled in the summer undergraduate research program. 0.5-15 var s.h.

CGS*762. Scientific Writing for MBS. This course will assist Master's in Biomedical Sciences students in writing their research proposal and/or thesis in the summer between their first and second year. The course is designed to synthesize the knowledge and skills developed in research courses and apply them to the masters thesis process. Students learn about all aspects of the process of developing and carrying out masters thesis, and they gain an understanding of standards and expectations that students need to meet to be successful in completing the thesis writing process. Throughout the course, students are required to work closely with their major advisors, and committee as appropriate. The course will be taught in a seminar style with extensive dialogue among the students and instructors. 1 s.h.

CGS*764. Science Writing As Persuasion. This nine-week, interdisciplinary course prepares students to move their ideas persuasively from pipette to pen. Students encounter a variety of scholarship on science and persuasion, focusing on the fundamentals of audience (who you write for), genre (what patterns you write from), and style (how you work with words), and develop rhetorical competencies for both professional and public contexts. To these ends, the instructors deploy an array of teaching techniques that include interactive lectures, group discussions, on-the-spot quizzes, and small-scale team projects.   Each week, students can reasonably expect to write between 500 and 1,500 words outside of class. That number may vary according to the assignment and the instructor.1 s.h.

CGS*765. Proteins:Dynam Struct & Funct. This is the first module in the integrated curriculum Biomolecular, Genetic and Cellular Essentials. 3 s.h.

CGS*766. Genes: Inheritance/Expression. This is the second module in the new integrated curriculum Biomolecular, Genetic and Cellular Essentials. 4 s.h.

CGS*767. Cells:Organization/Communicat. This is the third module in the integrated curriculum Biomolecular, Genetic and Cellular Essentials. 3 s.h.

CGS*768. Techniques & Experimental Desi. This course highlights essential tools and approaches required to achieve a high level of competency in biomedical research. Students will be exposed to the practical 'nuts and bolts' of a wide variety of molecular biology approaches spanning established basics, and timely new techniques. Course material will complement and align with scientific concepts covered in the Core Curriculum. This training is expected to provide students with foundational knowledge and an invaluable toolkit that will robustly enhance their ability to achieve scientific success.  This course is for all incoming first year graduate and MS students in the Biomedical Sciences Program. 2 s.h.

CGS*770. Principles Practices & Prof. This semester long course introduces graduate students to essential concepts in the practice of biomedical science, such as critical thinking, responsible conduct of research, reproducibility, transparency and rigor in science, and professional development. The course utilizes didactic lectures, group activities based on hypothesis development, student discussion of relevant literature, analysis of most appropriate funding mechanisms, and a range of skills focused on optimal development of career options.2 s.h.

CGS*772. Learning From the Literature. The new LFTL (Learning from the Literature) course is required for 1st year PhD students in the Biomedical Sciences. The course is focused on helping students make the transition to learning from the literature. A discussion of what the literature is and how to access it, an understanding of how to read scientific papers, and practice in thinking critically about the hypotheses being tested, experimental design and data presented are central to the course. The students will work individually and in groups and have multiple opportunities for discussion and presentation.2 s.h.

CGS*774. Host/Microbe:partner/Pathogen. This course is designed to introduce students to the basic principles and concepts of microbiology, virology, and microbiology. It presents an opportunity for students (preferably first-year graduate students) without/or with a minimum microbiology background to obtain a solid foundation in the referenced disciplines from which they can subsequently build a more rigorous familiarity to the field of microbiology. 2 s.h.

CGS*776. Metabolism & Bioenergetics. This course assumes a basic knowledge of bioenergetics metabolism and weaves this into a detailed exposure to the most current knowledge of how cytosolic and mitochondrial metabolism are integrated via cell signalng pathways, intracellular ultrastructure and redox physiology. The course incorporates new technologies in metabolomics and cellular imaging to illustrate how they contribute to ongoing studies of how dysfunction of bioenergetics metabolism contributes to diseases ranging from metabolic disorders, cancer, and degenerative pathologies. 2 s.h.

CGS*778. Int Physio Pharm of Cardio Sys. The course, Integrated Physiology and Pharmacology of the Cardiovascualr System, has four thematic foci of Cardiovascular System: 1) Cardiovascular physiology and pathophysiology: neuromuscular transmission and excitation-contraction coupling; 2) Electrical activity of the heart; 3) Cardiac output and its alterations during exercise and failure; and 4) Circulation and vascular hemodynamics.  2 s.h.

CGS*780. Human Genetics & Genomics. This course one of six mini-courses offered to 1st year PhD students in the Biomedical Sciences in the spring of their 1st year can also be taken by students in their 2nd year (and beyond) who are interested in the topic of human genetics and genomics. This course is intended to cover hereditary and molecular genetics as it applies to humans.  1. Develop an appreciation for the power and limitations of genetics and genomics. 2. Develop skills to address questions in genetic/genomic research and clinical practice. 2 s.h.

CGS*782. Fundamentals of Cancer Biology. Fundamentals of Cancer Biology will provide a survey of the most important topics in cancer biology that provide students a comprehensive understanding of the basic aspects of cancer as a disease, the causes of this family of diseases, the molecular mechanisms of its progression, and the basic aspects of how cancer is dealt with therapeutically, both now and in the future. 2 s.h.

CGS*784. Immunobiology. This course aims to guide the student through the immune system in all its aspects - from basic cellular immunology, first engagement of innate immunity, to the generation of the adaptive immune response and its clinical/disease consequences. The course will encompass topics such as antigen presenting cells, B cell function, complement system, Toll-like receptors, mucosal immunity, T cell tolerance and immunity.2 s.h.

CGS*790. Topics in Contemp. Biomed Sci. This comprised of various sections, each of which represents a 2 credit mini-course that meets three times per week for 5 weeks. The courses are scheduled during 3 sequential blocks in the spring semester, and there are at least two choices per block.  These courses are small and interactive, usually involving lectures, group discussions, and presentation of the primary literature.  The courses address important topics in contemporary biomedical science that go beyond the foundational material covered in the Fall core curriculum taken by first year students.

CGS*815. Translational Rsch Journ Club. This course introduces TL1 trainees to translational research via discussion of papers that exemplify translational research. The Journal Club will meet once a week at a time to be determined based on the schedules of the trainees and course facilitators. The journal club will be limited to a 1 hour discussion. Each week a trainee will be responsible for presenting a translational research paper and leading the discussion along with a faculty member. A faculty member will serve as a facilitator and also as an advisor to the trainee prior to the meeting of the journal club. 1 s.h.

CGS*830. Basic Principles in Drug Disco. Graduate students in the biomedical sciences routinely use pharmacologic agents in their research, but they do not always understand how and why these agents were discovered, or the mechanism by which they produce an effect. Every therapeutic agent was discovered and developed through research involving multiple scientific disciplines. Successful drug discovery research in both academia and the pharmaceutical industry is, by nature, a highly collaborative enterprise.  To be sure, young scientists who aspire to a career in drug discovery should be well-trained experts in their chosen area of research.  However, they must also have an understanding of basic principles used routinely by collaborators in related research areas in drug discovery. Such knowledge will ensure that they can effectively communicate with scientists in other disciplines, and thereby facilitate the discovery of novel therapeutic agents. This course will cover basic  principles of drug discovery research, including  the early discovery phase (target identification  and validation, medicinal chemistry, in vitro and  in vivo pharmacology and protection of  intellectual property), mid-stage considerations  (pharmacokinetics, ADME, toxicology and  metabolism, formulation) and will briefly cover  late stage discovery (clinical trials and  marketing). While some element of traditional instruction is required, each topic will be introduced in large part through in-class discussion and analysis of examples from the primary literature. 2 s.h.

CGS*832. A Month in the Research Nexus. Trainees spend a month in the Research Nexus learning the principles and concept for writing and managing a research grant. The trainees, working with an advisor, are required to write an R21 clinical/translational research grant. Prerequisite: Translational Sciences Clinic or permission of the instructor. 5 s.h.

CGS*871. Translational Sciences Clinic. Trainees spend a half day a week in a clinic that compliments their dissertation research. TL1 trainees will be expected to shadow the attending physician and also perform a literature search about the patient's medical problem and discuss it with the attending physician. 1 s.h.

CGS*888. Drug Dis-Target to Therapeutic. This course presents a wide variety of information in the broad area of drug discovery, including the early discovery phase (target development, in vitro and in vivo assay development, screening, lead optimization, structure-based drug discovery), mid-stage considerations (in vivo studies, ADME, toxicology and metabolism, advanced preclinical trials) and late stage discovery (clinical trials and marketing). The various phases of the drug discovery process will be introduced in the context of 3 successful drug discovery efforts, presented in a discussion format. 1 s.h.

CGS*970. Research. Research.  Variable 1-15 s.h.

DDBS*701. Drug Discovery I: Pharmacology. Successful drug discovery research in both academia and the pharmaceutical industry is, by nature, a highly collaborative enterprise. Students who aspire to a career in drug discovery should be well-trained experts in their chosen area of research. However, they must also have an understanding of basic principles used routinely by collaborators in related research areas in drug discovery. Such knowledge will ensure that they can effectively communicate with scientists in other disciplines, and thereby facilitate the discovery of novel therapeutic agents. This course is the first in a series of four 8-week mini courses that form the core curriculum for the Department of Drug Discovery and Biomedical Sciences. The first 3 courses will deal with basic principles within each of three disciplines. In the fourth 8-week course, each student will complete an advanced course in their area of concentration. Taken together, these courses will cover all of the scientific principles that need to be understood for a career in drug discovery research. 2 s.h.

DDBS*702. Drug Disc Ii: Medic Chemistry. Successful drug discovery research in both academia and the pharmaceutical industry is, by nature, a highly collaborative enterprise. Students who aspire to a career in drug discovery should be well-trained experts in their chosen area of research. However, they must also have an understanding of basic principles used routinely by collaborators in related research areas in drug discovery. Such knowledge will ensure that they can effectively communicate with scientists in other disciplines, and thereby facilitate the discovery of novel therapeutic agents. This course is the second in a series of four 8-week mini courses that form the core curriculum for the Department of Drug Discovery and Biomedical Sciences. The first 3 courses will deal with basic principles within each of three disciplines. In the fourth 8-week course, each student will complete an advanced course in their area of concentration. Taken together, these courses will cover all of the scientific principles that need to be understood for a career in drug discovery research. 2 s.h.

DDBS*715. Environmental Stress Signaling. This course will provide advanced knowledge on the mechanisms of cell responses to a wide range of environmental stresses including chemical, physical, anoxia/reperfusion and other pathogens. The course focuses on the signal transduction pathways leading to cell injury, carcinogenesis, necrosis, apoptosis, repair, regeneration, adaptation, and cytoprotection.  We will cover the events at system, cellular and protection levels; however, emphasis is given to the interactions among intracellular signaling pathways. This course is useful for all biomedical students and, in particular, for students who completed the course Cellular Defense Against Foriegn Chemicals and want to continue their understanding of the effects of environmental stress at cellular and molecular levels. 4 s.h.

DDBS*722. Light Microscopy for the Bio S. This hands-on course provides a solid introduction to the concepts and practical applications of light microscopy relevant to modern cell and molecular biology. Students will have opportunities for extensive hands-on experience with state-of-the-art equipment for optical imaging, digital image processing, and fluorescence and confocal/multiphoton microscopy guided by experienced academic and commercial faculty.1 s.h.

DDBS*726. Advanced Medicinal Chemistry. This course covers advanced topics of medicinal chemistry related to the synthesis of complex organic molecules. Emphasis is on the strategy for stereochemical induction, functional group transformations, retrosynthetic analyses and catalytic reactions. The course involves didactic lectures and workshops targeted to synthetic design. 3 s.h.

DDBS*741. Organ Systems Toxicology. A minimum of three lectures hours will be devoted to each organ system. A brief review of each organ system will be given at the beginning of the topic session. One or two examples of toxic agents for each organ system will be discussed, including proposed mechanisms of action and possible therapeutic interventions in the case of intoxication. Selected manuscripts from the literature illustrating toxic response to the organ system will be given out at the beginning of each organ system topic. The papers will be discussed in the final hour of the topic session. 3 s.h.

DDBS*762. Mitochondrial Biology. Mitochondria are involved in many of the cell's vital processes, which include the production of energy for the cells and apoptosis. Many common diseases are due to underlying mitochondrial dysfunction, thus it is imperative that students receive fundamental current knowledge of mitochondrial biology and the state of the art techniques used in the field today. 3 s.h.

DDBS*790. Special Problems. A variable credit course involving appropriate lectures, research-oriented laboratory work, written assignments and reports, and oral presentations. Variable 1-15 s.h.

DDBS*970. Research. Research. Variable 1-15 s.h.

DDBS*980. Thesis. Thesis. Variable 1-15 s.h.

GH*700. Topics in Global Health. This seminar course introduces students to topics in global health.  The curriculum focuses on the following global health issues: infectious and chronic diseases, maternal/child health, the relationship between political and cultural processes and health, and factors contributing to disparate health outcomes in population groups. Seminars will be held one evening per week for 1.5 hours. Each seminar will consist of a case-based discussion of a global health topic facilitated by interprofessional faculty with experiences in developing countries. Grading in pass/fail based on seminar attendance and performances on critiques of two seminar topics and a final paper. 2.5 s.h.

GH*702. Tropical Infectious Diseases. This course provides an overview of tropical and communicable diseases of global significance. Seminars will be held once a week for 1.5 hours. Lectures or discussions will focus on disease manifestations, treatment, and global impact of various infections including parasitic diseases, vector-borne infections, and exotic bacterial infections. Grades on seminar attendance and a final exam. 2.5 s.h.

GH*703. Epidem / Policy in Global Hlth. This course is the third module of the Global Health certification program. It provides essential methodological skills based on epidemiological principles in a global setting and translate data to support policy. In this course, epidemiological methods of assessing the health status of population will be presented in global context and essential strategies of interventions will be discussed. Practical examples and case histories are integral to the learning process. 2.5 s.h.

GH*704. Interprof. Perspectives in Glo. The overall purpose of this course is to provide students the opportunity to apply theoretical knowledge and clinical skills to global health studies coursework from pre-requisites courses.   Students will be involved in global, national, or local fieldwork experiences involving populations with various cultural backgrounds.  Areas of interest may include policy, health disparities research, clinical immersion, or a combination of these areas.  The course is structured to promote transfer of knowledge, skill, and values that are shared by all health professionals and that can be learned best within the context of interprofessional education and practice as noted in the MUSC Interprofessional Courses guidelines.  2.5 s.h

MBIM*623. Microbiology-Dental Students  . This course will foster a knowledge base and understanding of the fundamentals of bacterial physiology and genetics; clinical bacteriology, virology, parasitology and mycology; antimicrobial therapy; and infection control. The primary goals of the course are to explore the relationship between the physiology of medically important microbes to the pathobiological sequelae of human-microbial interactions, with particular reference to the role of microbes in human disease. In addition to lecture, instruction includes problem based, small group exercises in microbiology with clinical case scenarios. The course grade will be based on 3 multiple choice question exams, in-class quizzes, small group laboratory write-ups, and an evidence based decision making paper (PICO) on an infectious disease question of their choice. 4 s.h.

MBIM*735. Mol & Cell Bas of Inflam & Imm. This course represents an intensive and in-depth study of the areas of cellular immunology, immunogenetics, clinical immunology, and the immunobiology of tumor development. Each area will be presented with the intent of developing a sound understanding of experimental and theoretical observations. Emphasis will be placed on the most current research involving sophisticated methodology.  4 s.h.

MBIM*742. Advanced Microbiology. The course will present in-depth perspectives on the agents responsible for the major bacterial, viral and parasitic-induced diseases. Emphasis will be placed on current research and new insights gained into the biochemistry, molecular biology and immunology of these organisms. 4 s.h.

MBIM*770. Seminar. Participation of graduate students in this course is mandatory. Guest speakers supplement the regular program. Each graduate student gives at least one seminar yearly. 1 s.h.

MBIM*772. Environmental Microbiology. The course emphasizes fundamental microbiological principles as they apply to the environment. Its main goal is to introduce the student to the concepts of microbial diversity and evolution, microbial metabolism and catalysis in the biodegradation and synthesis of natural and man-made compounds, the microbial role in biogeochemical cycling, and the interactions of microbes with the physical environment and with other organisms related to the application of microbiological approaches to problems which exist in today's environment. The course should prepare the student interested in environmental problems and issues with the necessary practical information to make sound judgements in assessing meaningful solutions and the role microorganisms play in those processes. 3 s.h.

MBIM*775. Sp Topics in Micro & Immuno. This elective course will provide continuous update in immunology to those students who have completed Basic and Advanced Immunology and taken their qualifying examination. It will be a seminar course during which the students will meet with the instructors for two hours a week over a semester to discuss the most recent publications and the new insights they give. To ensure a broad coverage, any faculty in Immunology and Microbiology may suggest a topic to be discussed. Prerequisite: MBIM-731 or permission of instructor. 2 s.h.

MBIM*779. Immunogenetics.  Initial lectures will review the fundamental principles of genetics. The principle focus of the course will be the genetics of human MHC and immunoglobulin allotypes. Major blood genes will also be discussed. Statistical methods employed in delineating the genetic contribution to human diseases will be reviewed. 2 s.h.

MBIM*786. Cancer Immunotherapy Lessons. This course will combine didactic lectures with participation in mock study sections. The first 3 weeks of class will be lecture and the remaining 12 weeks will be used to review and critique past grant proposals related to cancer immunotherapy recently submitted by principal investigators at MUSC. Students will also attend the monthly meetings of the Cancer Immunology and Immunotherapy (CII) program faculty (4 meetings during the semester) and submit a 1 page written summary and response for each. 2 s.h.

MBIM*788. Immunobiology. This course will teach basic immunological and microbiological concepts through in-depth study of six microorganisms responsible for emerging or epidemic infectious diseases.  Each week will focus on the biology, natural history, pathology and immunology associated with one pathogen. Pathogens covered will include avian influenza, tuberculosis, Ebola/Marburg virus, methicillin resistant Staph. aureus, SARS, and anthrax. Classes will include lecture, primary literature reading and analysis, and some in-class small group work.  Student performance will be assessed by weekly quizzes (60%), presentation of an assigned paper (10%), and a cumulative final exam (30%). 3 s.h.

MBIM*856. Critical Lit Review. Course is a formalized, refereed journal club focused on topics of general interest in Microbiology and Immunology. Papers are limited to those published in high impact journals, e.g. Nature, Science or Cell, in the areas of microbiology and immunology. Students may choose their own papers, but the paper must be approved by two M&I faculty members. For each paper, two faculty members (chosen by the course director) will be designated as referees. The names of the referees will be publically announced, and the faculty and student referees will grade the presenting student. In this case, the student will get feedback from both faculty members and their peers. The student referees will also provide detailed written critiques of both the paper and the presentation. The referee system also assures that at least 5 people have read the paper. 1 s.h.

MBIM*970. Research.  Research. Variable 1-15 s.h.

MBIM*980. Thesis. Thesis. Variable 1-15  s.h.

MCBP*725E. Teachers' Environmental Educ. To provide teachers with a broad framework to use in investigating, understanding, and teaching environmental issues to junior and high school students. 3 s.h.

MCBP*625H. St: Coral Biol: Complex Role. 3 s.h.

MCBP*723. Advanced Cell Biology    . An advanced coverage of contemporary topics in cell biology along with an in-depth treatment (lectures followed by laboratory demonstrations) of modern techniques and experimental strategies. This course is aimed at all students who are preparing for research and teaching careers in the life sciences.  3 s.h.

MCBP*724. Seminar in Molecular & Cell  .  MCBP Seminar Series. Students give a short seminar based on their own research to their peers and to their graduate committee members. Students are required to give at least two formal seminars during their training. The MCBP External Seminar Series invites leading scientists from the United States and foreign countries to present their work to both students and faculty in the MCBP Program. These seminars are on a broad range of topics representing each of the six divisions within the MCBP Program. Importantly, students have the opportunity to meet informally with the speakers over lunch.  1 s.h.

MCBP*725A. ST:Intro to Comp Based Seq An. Var 1-3 s.h.

MCBP*725D. ST: Cancer Research. Two presentation formats will be used for the course.  Initially, a faculty member will introduce and direct all students in the discussion of selected literature concerning a single topic. Subsequent topics will be presented by individual students in Journal Club style. Each student will have two opportunities to present selected topics during the course and will be active discussants when other students present. Topics to be covered include: Cell Proliferation and Cycle Control                Apoptosis Oncogenes and Tumor Suppressor Genes Metastasis                           Angiogenesis Tumor Invasion Cell Adhesion                   Cell Migration Signal Transduction and Growth Regulation Molecular Profiling Translation Applications                           Transgenic and Knockout Models 3 s.h.

MCBP*725F. ST:Introduction to NMR. Introduction to small molecule NMR structural analysis 3 s.h.

MCBP*725L. St: Organ System Diseases. The Organ System Diseases block is devoted to an exploration of contemporary research on the molecular basis of diseases that do not clearly fit into the rubrics of the first three blocks. 3 s.h.

MCBP*725M. St: Proteomics Informatics. The objective of this course is to instruct active proteomics researchers in the use of a suite of software tools designed for the analysis, validation, storage and interpretation of data obtained from large-scale quantitative proteomics experiments using stable isotope labeling method, multi-dimensional chromatography and tandem mass spectrometry. Through daily lectures and hands-on exercises, each course participant should become proficient in the use of the tools. 2 s.h.

MCBP*725. SP:Marine Mammal Journal Club. This course introduces students to some of the topical issues in marine and environmental Sciences as they relate to Human Health. The course shows the application of cell and molecular biology and epidemiology approaches to environmentally relevant questions that ultimately impact human health. These topics are put into context of the reports of the International Panel on Climate Change, the Kyoto Protocol, and the latest Bali summit. In addition students will participate in learning how results from research in environmental cell and molecular science are synthesized with economics and law to form public policy. The role of federal and SC state government agencies in these processes will be presented through the appropriate representatives of these agencies on the Ft. Johnson campus. This is a course that includes students reading scientific papers, lay communications, and books in conjunction with active class participation through discussions on topical issues. Var 1-3 s.h.

MCBP*725G. Special Topics. Class will meet once a week for 3 hours and will discuss the week's topic and any questions from the precious weeks lecture and reading.  No specific textbook will be used.  Reading material for each lecture will be provided from various sources. 3 s.h.

MCBP*725N. St: Cell Biology Journal Club. This course is designed to give the student exposure to the clinical genetics laboratories. Each weekday, the student will meet with the faculty preceptor for a didactic discussion of the topic of the day. For the first 4 weeks the topic will be in Clinical Cytogenetics and for the next four weeks, the topic will be related to molecular genetics. The student is responsible for independent study on the topic and presentation of the topic. In addition, the student will observe clinical laboratory activities, perform some laboratory tasks and assist with clinical research project on data basing clinical genetic microarray data. 1 s.h.

MCBP*725H. Coral Biology:The Complex Rol. This course is directed towards students interested in coral ecosystems, as well as molecular approaches to assessing microbial diversity and function.  Students will gain direct experience writing an NSF-style proposal as a research team targeting NSF's Microbial Interactions and Processes initiative. 3 s.h.

MCBP*725P. St: Environ Impacts on Human &. This course introduces students to some of the topical issues in marine and environmental Sciences as they relate to Human Health. The course shows the application of cell and molecular biology and epidemiology approaches to environmentally relevant questions that ultimately impact human health. These topics are put into context of the reports of the International Panel on Climate Change, the Kyoto Protocol, and the latest Bali summit. In addition students will participate in learning how results from research in environmental cell and molecular science are synthesized with economics and law to form public policy. The role of federal and SC state government agencies in these processes will be presented through the appropriate representatives of these agencies on the Ft. Johnson campus. This is a course that includes students reading scientific papers, lay communications, and books in conjunction with active class participation through discussions on topical issues. 3 s.h

MCBP*725. Topics in Cancer Research. Two presentation formats will be used for the course.  Initially, a faculty member will introduce and direct all students in the discussion of selected literature concerning a single topic. Subsequent topics will be presented by individual students in Journal Club style. Each student will have two opportunities to present selected topics during the course and will be active discussants when other students present. Topics to be covered include: Oncogenes and Tumor Suppressor Genes, Cell Migration, Cell Proliferation and Cycle Control                 Apoptosis, Oncogenes and Tumor Suppressor Genes, Metastasis, Angiogenesis, Tumor Invasion, Cell Adhesion, Cell Migration, Signal Transduction and Growth Regulation, Molecular Profiling, Translation Applications and Transgenic and Knockout Models. 3 s.h.

MCBP*728. Integra Biol of the Cardio Sys. This course is designed to build on the Receptors and Signaling and Systems Biology units of the first year curriculum for Ph.D. students to provide the students with an in depth understanding of the structure, function and integration of the cardiovascular system at the human and whole animal levels and the assessment of cardiovascular function in whole animal models including transgenic animals. Current concepts of the cell and molecular biology bases of cardiovascular function, dysfunction and responsiveness to therapeutic interventions will be explored. Course faculty include investigators from Adult Cardiology, Adult Endocrinology, Cell Biology and Anatomy, Pharmacology, Physiology and Neuroscience and Surgery. Relevant material will be addressed through a combination of lectures, discussion of papers from the literature and problem solving exercises (open book). 3 s.h.

MCBP*729. Chemical & Environmental Toxic. this course will provide an understanding of the sources and occurrence of the major classes of environmental toxicants and their mechanisms of action. Properties of environmental chemicals which influence their distribution and transformations; action of environmental forces which affect toxicant breakdown, movement, and accumulation will also be discussed. Current practices of health risk assessment of environmental chemicals using toxicological principles and their application to regulatory control of these chemicals will conclude the course. 3 s.h.

MCBP*731. Biogeochemistry of the Oceans. This course will focus on global and biogeochemical cycles in the oceans (carbon being one of enormous significance) and on the behavior and transport of natural and anthropogenic compounds, including persistent organic pollutants (POPs), in the oceans.  A specific focus will be on the role of microorganisms in geochemical cycles and transformation of organic/inorganic pollutants in ocean systems.  Since there is also a significant policy component to ocean biogeochemistry (i.e., storage of carbon dioxide in the oceans as an example), these issues will also be addressed, bringing in the necessary expertise from regional, state and federal agencies.  The course will focus on discussions and presentations of articles from the primary literature, student-coordinated debates, science-driven short writings (1 page) based on high profile policy issues, and a short (5 page) term paper.  The final exam will consist of a formal oral presentation of the term paper topic (all faculty and students in the Marine Biomedicine & Environmental Sciences program will be invited to attend).  As necessary, faculty from the five Ft. Johnson institutions (MUSC, NOS, NIST, SC DNR, CofC) will be recruited to contribute to lectures and discussions.  No formal text will be required. 3 s.h.

MCBP*733. Biomolecular Structure & Funct. The underlying aim of this course is to emphasize the value of structural information as a tool for understanding the function of biological systems. Because precision in structure is an important factor in most (if not all) biomolecular processes, the skills gained in this course can be applied in any chosen field of biology.  As well as principles of macromolecular structure, the course will cover several techniques used to obtain high-resolution structure, such as X-ray crystallography and NMR. Some landmark studies in structural biology will be described, including the structure of DNA and of the ribosome. 3 s.h.

MCBP*734. Immunology of Marine Organisms. The emphasis of this course will be to build on the mammalian immune system foundation taught in the First Year Curriculum by presenting examples of immune systems from marine organisms that illustrate two themes.  The first theme will be the evolution of immunity. Marine invertebrates possess only innate immune mechanisms, and present an outstanding opportunity to demonstrate the importance of this system. It will be emphasized that all vertebrates, despite their sophisticated T and B cell-based adaptive immune systems, still require the essential services of innate immunity for survival in the face of infectious disease. The second theme will be the impact of the aquatic environment on the nature of infectious disease and immune function. The students will be challenged to consider and answer the following questions?  Does the aquatic environment produce quite different types of infectious disease challenge?  If so, what unique immune defense mechanisms have evolved in aquatic organisms to combat the infectious disease challenges related to this environment? 2 s.h.

MCBP*735. Marine Natural Products Chemis. This course will include chromatography, chemical biosynthesis, total synthesis, structural analysis, isolation and culturing.  Course Outline will include Introduction to MNP; Search, Isolation, and Culturing; Chromatography; Structural analysis; Chemical synthesis/Biosynthesis, and Conclusions. 3 s.h.

MCBP*737. Marine EcoGenomics. This course provides an overview of contemporary functional genomics applied to economically and ecologically important marine species. Emphasis is placed on Crustacea, specifically shrimp, as this group of invertebrates is the focus of a multidisciplinary and multi-institutional research and graduate training program through Marine Biomedicine and Environmental Sciences.  The course is divided into 3 major areas reflecting the academic disciplines brought to bear on this highly integrative field: genomics, proteomics, and bioinformatics. 3 s.h.

MCBP*739. Molecular Basis of Cardio Dise. The course is designed to highlight the advances in cardiovascular science and medicine, which will soon form the foundation for novel diagnostic, prognostic and therapeutic approaches to treating heart disease.  Over the past decade a growing number of genes, receptors, channels and signaling factors have been shown to play a role in cardiovascular disorders. The course will examine the new approaches and technology that are being utilized to identify the molecular mechanism that these factors play in cardiovascular function and disease.  We will discuss the power of utilizing molecular genetics to unravel heart diseases. We will also look at advances in our understanding of cardiovascular development, and electrophysiology. We will also discuss how new breakthroughs in tissue engineering may allow for the replacement of diseased myocardium.  The course will also include sections on vascular biology and atherogenesis.  This Course will be taught every other year in the spring.  3 s.h.

MCBP*742. Adv Top in Cell Signalling. The vast majority of human diseases involve defects in cellular communication and therapeutic intervention often targets molecules involved in cell signaling. This course will dissect signaling cascades and their alterations in disease states addressing cutting edge issues. The course will be offered each Fall with the theme rotating among three broad topics: Cell Signaling in the Cardiovascular System, Cell Signaling in Cancer, Cell Signaling in the Nervous System.  Specific diseases under these broader categories will be selected by faculty or students and then each disease will be dissected by one of the course participants (oral/written) to understand how signaling events are affected, how signaling dysfunction contributes to the onset or progression of the disease and how signaling events might be targeted in a therapeutic attack on the disease. The course is intended for advanced graduate and postgraduate students and will be coordinated with the Cell-Signaling Seminar Series (organized through the Department of Pharmacology) held each Fall, thus allowing seminar speakers to participate in the course. 3 s.h.

MCBP*743. Cellular Signaling Development. This course is designed to build on the Regulation of Gene Expression, Biomembranes, Receptors and Signaling and Systems Biology units of the first year curriculum for Ph.D and complement ongoing Department-specific seminars and journal clubs. Cellular Signaling during development will provide the students with an in-depth look at ongoing research in the field of developmental biology with a strong focus on the signaling networks that control these important processes.  It will allow for a broad scope of understanding of the techniques, theories and practices involved in the delineation of cellular signaling in complex systems. 3 s.h.

MCBP*745. Topics in Oral Health Sciences. Current and emerging topics in craniofacial biology will be presented and discussed in a Journal Club style format. Initially, a faculty member will introduce and direct all students in the discussion of literature concerning oral-related research topics. Subsequently, students will present topics using faculty-approved papers from top-tiered journals. Students will be expected to participate in active class discussion with other graduate students, postdoctoral fellows, and faculty. 0.5 s.h.

MCBP*746. Environment, Oceans & Humans. This course introduces students to some of the topical issues in marine and environmental Sciences as they relate to Human Health.  The course shows the application of cell and molecular biology and epidemiology approaches to environmentally relevant questions that ultimately impact human health. These topics are put into context of the reports of the International Panel on Climate Change, the Kyoto Protocol, and the latest Bali summit. In addition students will participate in learning how results from research in environmental cell and molecular science are synthesized with economics and law to form public policy. The role of federal and SC state government agencies in these processes will be presented through the appropriate representatives of these agencies on the Ft. Johnson campus.  This is a course that includes students reading scientific papers, lay communications, and books in conjunction with active class participation through discussions on topical issues. 3 s.h.

MCBP*747. Oral Health Sci Seminar Series. In this series, students give a seminar based on their own research to their fellow students, advisory committee, faculty and post-doctoral fellows in the College of Dental Medicine. This is a great opportunity for the students to present their work in an informal setting and to receive constructive feedback on his/her studies from a large audience with different scientific backgrounds. Each graduate student will give at least one seminar yearly. Lectures will be supplemented with local as well as invited external speakers, whose research focus is on craniofacial biology. 0.5 s.h.

MCBP*749. Coastal Ecosystem Health. Current and emerging topics in marine organismal and environmental health will be presented and discussed in a journal club-style format. Students will be present topics related to the topic of marine organismal and environmental health using faculty-approved articles from peer-reviewed journals, and will be expected to actively participate in the discussion with other students, post doctoral fellows and faculty members. 1 s.h.

MCBP*750. Otolaryng & Comm Hlth Seminar. Otolaryngology and Communication Health Seminar Series brings premier scientists in areas related to otolaryngology and communication health to MUSC to give seminars and meet with trainees and program faculty. Seminars are scheduled monthly during the academic year, on an alternating two-week schedule with Otolaryngology and Communication Health Journal Club. The Seminar Series is an interactive venue with an expanding network of visitors to the MUSC campus. Some visitors present talks on topics directly related to otolaryngology or communication disorders while others discuss topics of more general interest to basic and clinical trainees and faculty, including genetics, proteomics, health outcomes, and computational biology. Seminars may also be focused on emerging technologies/techniques, such as advanced microscopy and imaging, microarray technology, and optogenetics. Trainees meet individually or as a group with the invited speakers. 0.5 s.h.

MCBP*751. Otolaryng & Comm Hlth Jrnl Clb. Otolaryngology and Communication Health Journal Club meets monthly during the academic year, on an alternating two-week schedule with Otolaryngology and Communication Health Seminar Series. Hosted by the Department of Otolaryngology-Head and Neck Surgery and directed by selected Core Mentors, Journal Club disseminates recent otolaryngology and communication health-related publications and provides a supportive environment to discuss research evidence and implications for clinical outcomes and treatment. Presentations are by students, postdoctoral fellows, and faculty; Journal Club is open to all individuals interested in the topics under discussion, including laboratory staff. While the primary motivation is promotion of scientific discussion, Journal Club also provides an opportunity for social and collaborative networking. 0.5 s.h.

MCBP*752. Basic Receptor-ECM Signaling. This course will present the general concept of predominant cell signaling events in inflammatory pathology and developmental biology. Students in most programs use cell signaling as part of their research. This course will cover the power of signaling that influences the fate of the cells, development of the organ, and therapeutic strategies in inflammatory pathology and cardiac development. Prerequisite: Biology or Biochemistry. 3 s.h.

MCBP*753. Cell Bio & Cancer Journal Club. This course introduces students to methodology and theories involved in the study of cell biology and cancer through student participation in a formal journal club. The course will use student driven reviews of journal articles pertaining to cellular and molecular biology including basic mechanisms and cancer research. Students will be required to lead a discussion (2 hours) on at least one article which has been recently published on a broad range of topics including basic cellular mechanisms, cancer biology and disease. All students will be encouraged to ask questions and participate in discussions. Student presentations will be augmented by the addition of interested postdoctoral fellows and faculty.1 s.h.

MCBP*762. Mechanisms of Development. This course will provide a general overview of fundamental developmental mechanisms and central concepts of development. This 5-week course covers early and intermediate developmental events, mouse molecular genetics and gene regulation. Comparative systems discussed include drosophila, zebrafish, Xenopus, chick, and mouse models. This course is intended for graduate students training in any aspect of biomedical research. 1 s.h.

MCBP*770. Spec Project in Marine Biomed. Marine Biomedicine faculty will mentor a limited number of students in research and applied fields of endeavor.  Emphasis is placed on interdisciplinary integration of topics germane to marine environmental science and human health. Prerequisite:  permission of instructor. Var 1-3 s.h.

MCBP*780. Vision & Ocular Diseases. Current and emerging topics in vision and ocular diseases will be presented and discussed in a journal club-style format.  Students will present topics related to vision and ocular diseases using faculty-approved articles from peer-reviewed journals, and will be expected to actively participate in the discussion with other students, post doctoral fellows, and faculty members.  Some presentation will be made by visiting and MUSC faculty members.1 s.h.

MCBP*782. Cardio Biology Journal Club. The Cardiovascular Biology Journal Club course is designed to highlight the advances in cardiovascular science and medicine that will soon form the foundation for novel diagnostic, prognostic and therapeutic approaches to treating heart disease. Publications will be presented by the students weekly, which address current concepts of the cell and molecular biology bases of cardiovascular function, dysfunction and responsiveness to therapeutic interventions. Students, postdoctoral fellows and faculty who will take part in the weekly discussion include investigators from adult cardiology, adult Endocrinology, Cell Biology and Anatomy, Pharmacology, and Surgery. 1 s.h.

MCBP*801. MCBP of Mineralized Tissues. This course will cover the biologic principles and cellular/molecular processes of mineralized tissue development, composition and regulation in health and disease.  The objectives of this course are: 1) To further understanding of the biologic principles of mineralized tissue development, composition and regulation in health and disease. 2) To develop the ability to read and critique literature in the mineralized tissue field that pertains to craniofacial biology.  3) To achieve a high level of expertise in at least one topic area of mineralized tissues via presentation for education and peer review.   3 s.h.

MCBP*802. Adv Oral Micro & Immun. This course will teach microbiological and immunological concepts through in-depth study of infectious diseases.  Emphasis will be placed on the major bacterial, fungal, and viral infections affecting the oral cavity and associated craniofacial structures.  Course topics will focus on the pathogen, the host response to the pathogen during the normal and disease state, and strategies used to prevent or treat these diseases.  Students will also be introduced to topics such as biofilm formation, quorum sensing, and the oral-systemic disease connection.  Classes will include lecture and primary literature analysis.  Student performance will be assessed by small group discussion, presentation of assigned paper(s), and exams. 3 s.h.

MCBP*970. Research. Research. Variable 1-15 s.h.

MCBP*980. Thesis. Thesis. Variable 1-15 s.h.

MCR*626. Internship 101. Internship 101 is the required capstone course that occurs in the final three weeks of the M.D. program curriculum. It is designed to prepare year 4 students for the transition to internship. This course is comprised of multiple elective sessions that focus on critical knowledge and skills requisite for all interns.  A simulation activity is also required which teaches the diagnosis and management of common unstable conditions based on the student's internship match. The elective didactic sessions are designed to enhance specialty-specific education, training, and knowledge and skills in key competencies. Simulation-based procedures workshops improve learners basic and advanced procedural skills. ACLS and PALS certifications are also available during Internship 101. New sessions are added yearly based on the suggestions and feedback of previous attendees. Prerequisite: successful completion of the third and fourth year courses. 2.5 s.h.

MCR*700. Clinical Biostatistics. An introduction to basic and intermediate statistical techniques used to analyze and interpret data in health sciences and related fields.  Emphasis is on applications of these methods with just enough derivation to understand the procedures.  Topics include descriptive statistics, graphical methods and probability with applications to epidemiology, discrete and continuous distributions, inference on means, nonparametric methods, and inference on proportions, contingency tables, correlation, analysis of variance, linear regression, logistic regression, and survival analysis.  Students will not be expected to run computer programs, but will learn how to read printout in order to interpret analytical results. 3 s.h.

MCR*724. Intro to Clinical Trials. An emphasis will be placed on the concepts, study designs and procedures used in the implementation of clinical trials research studies.  The methodology and process used to access and analyze data as well as the collection of data will be described. 3 credit hours.

MCR*725. Grant Development. The objective of the course is to prepare the student to develop a draft grant application, the sections of a grant, IRB regulations and procedures, what reviewers look for and how to think like a reviewer, ethics, and developing a research budget. Students will be given examples of successful grants and grants that have not been funded to discuss and critique. 2 s.h.

MCR*731. Critical Review. This course is required for the Master of Science in Clinical Research. It is assumed that students in this class have a solid foundation in research design and both parametric and nonparametric statistics. An emphasis will e placed on the competencies and processes necessary to review the scientific literature. In particular, the students will review the published and unpublished literature associated with clinical research results. The focus of the class will be the review of the types of scientific and clinical research manuscripts, papers, and reports produced from different study approaches. The course will identify resources for the critical review of the scientific literature. The considerations and criteria for critical review of the literature will be addressed in the course. Students will prepare written critiques of selected literature and manuscripts. Prerequisites: MCR 700, 736, or permission. 2 s.h.

MCR*732. Comparative Effectivness Resch. This course explores the scope of outcomes studies for evaluating the effectiveness of medical care by emphasizing the development of study designs matched to the research question. The course explores frequently used observation study designs, techniques for evaluating and selecting health outcomes measures, and analytical approaches appropriate to conducting health outcomes research. This course will also cover the approaches used for interpretation and translation of CER data through decision models to compare the cost effectiveness of treatments. 3 s.h.

MCR*736. Clinical Epidemiology. This course provides an introduction to the discipline of epidemiology and its application to public health research and practice. The course is designed to provide a conceptual foundation for epidemiologic research and application, especially study designs, quantitative concepts and methods, analysis, and interpretation. 3 s.h.

MCR*738. Clinical Research Intro. This course provides students with the basic structure of clinical research, mentorship, resources for professional research available throughout the campus.  Emphasis will be placed on a variety of clinical research conducted on MUSC's campus. 1 s.h.

MCR*746. Informatics and Data Managemen. This course is intended to introduce clinical researchers to research oriented data management and related basic topics in Informatics.  Students taking this course will learn about basic concepts in: relational database design, modern research data capture tools, clinical data warehousing, security risks and mitigations, privacy issues in electronic data, data standards, data mining and other related topics. Students will get hands-on experience with using modern database tools to solve specific scientific problems by attending the course labs. 2 s.h.

MCR*750. Ethical Issues in Clin. An emphasis will be placed on the ethical issues associated with clinical research and practice. The focus of the class will be the review of the competencies involved in the conduct of ethically responsible research. The process of assessing ethical issues in research and study will be described. The ethical considerations in study design; study implementation, data management, data analysis, data Interpretation and results presentation and publication will be described. 1 s.h.

MCR*752. Team Science in Clinical Resch. An emphasis will be placed on the competencies and processes associated with the concepts of team science in translational research necessary to review the scientific literature. Solving complex societal problems (e.g., environment, poverty, and cancer, health care) requires the integration of specialized knowledge bases.1 s.h.

MCR*789. Special Topics. This course is taken online and  prepares participants to coordinate cost-effective health care research which protects the rights and safety of human subjects, achieves recruitment and retention outcomes and contributes to the science of health care.  Participants completing the training will be prepared to coordinate research studies in compliance with the Good Clinical Practice Guidelines and federal regulations concerning human subject research.  All participants of this course are required to take the CITI MIAMI Good Clinical Practice and ICH Basic Course as a pre-requisite. 1 credit hour.

MCR*970. Mentored Research. This is a varied credit hour research course determined by the student and mentor. A contract between the two includes material covered and deliverables at the end of the semester. Var 1-10 s.h.

NSCS*971E. Neurosurgery Reseach. Research based elective for 4th year medical students.Var 2.5-5 s.h.

NSCS*901E. Neurosurgery Externship. This rotation includes all non-MUSC pre-approved externships for 4th year students.Var 2.5-5 s.h.

NSCS*970E. Neurology Research. Research based elective for 4th year medical students.Var 2.5-5 s.h.

NSCS*900E. Neurology Externship. This rotation includes all non-MUSC pre-approved externships for 4th year students.Var 2.5-5 s.h.

NSCS*621. Human Physiology. This course offered to both Dental and Pharmacy students is designed to present, in detail, the basic principles of human physiology.  The core lectures are organized around a systems approach to the study of physiology, concentrating on each basic structural and functional unit of the human body.  Emphasis is on understanding how cellular and organ systems function and how they are integrated and regulated by the body to maintain homeostasis. The course is primarily lecture-based and is supplemented with laboratory experimentation, clinical correlations and pathophysiology conferences.  The Dental and Pharmacy students attend separate conference and laboratory sessions designed to reinforce and expand upon basic physiologic concepts with reference to their particular professions. 6 s.h.

NSCS*730A. Fundamentals of Neruosci-A. NSCS 730A (this course), NSCS 730B and NSCS 730C will replace original Fundamentals of NS course, NSCS 730. This 2-credit course represents the first part of the introductory graduate sequence designed to provide an overview of the fundamental concepts in the field of neuroscience. The course covers the electrical properties of neurons, synaptic transmission along with an anatomical overview of mammalian (rat and human) brain. The class is primarily taught in lecture format but also includes an optional human brain dissection laboratory.  NSCS 730A is prerequisite for the other two sister courses i.e., NSCS 730B and NSCS 730C that are also offered during the Spring semester. All 3 courses are required for students intending to join the neuroscience graduate program while NSCS 730A may be taken by non-neuroscience track students who are considering training in the neuroscience program. 2 s.h.

NSCS*730B. Fundamentals of Neurosci-B. NSCS 730A, NSCS 730B(this course), and NSCS 730C will replace original Fundamentals of NS course, NSCS 730. This 2-credit course represents the second part of the introductory graduate sequence designed to provide an overview of the fundamental concepts in the field of neuroscience. The course covers an overview of the motor and sensory systems, associated circuits and anatomical structures. The class is primarily taught in lecture format but also includes an optional human brain dissection laboratory. NSCS 730A is prerequisite for NSCS 730B (this course) and NSCS 730C, and all 3 are required for students intending to join the neuroscience graduate track.2 s.h.

NSCS*730C. Fundamentals Fo Nerurosci-C. NSCS 730A, NSCS 730B, and NSCS 730C(this course), will replace original Fundamentals of NS course, NSCS 730. This 2-credit course represents the second part of the introductory graduate sequence designed to provide an overview of the fundamental concepts in the field of neuroscience. The course covers an overview of the biochemical basis of neuropharmacology including neurotransmitters, their receptors and signaling. The class is primarily taught in lecture format. NSCS 730A is prerequisite for NSCS 730C (this course) and NSCS 730B, and all 3 are required for students intending to join the neuroscience graduate track.2 s.h.

NSCS*735. Clinical/Systems Neuroscience. This course is the second component of the introductory graduate sequence designed to provide an overview of the fundamental concepts in the field of neuroscience. Building upon the anatomy and physiology covered in Fundamentals of Neuroscience, this course covers the development and plasticity of the nervous system, higher brain functions such as memory and language, and clinical neuroscience. The class is taught in lecture format. A background in basic biology or permission of the instructor is required. 5 s.h.

NSCS*737. Human Neuroanatomy Laboratory. A laboratory offered to graduate students in neuroscience and bioimaging to study human neuroanatomy.1 s.h.

NSCS*780. Seminar. All students in the Physiology/Neuroscience graduate program will participate in this course which involves seminars by invited outside speakers, MUSC faculty, postdoctoral fellows, as well as students.2 s.h

NSCS*801. Neuro & Rehab Med Clerkship. Introduces students to the care of patients with neurological disorders and conditions, as well as the role of rehabilitation medicine in improving patients' functional status and quality of life. Emphasis is placed on performing, documenting and verbally presenting histories and physical examinations of patients with neurological diseases; developing a differential diagnosis, assessment and treatment plan; participating in the treatment of neurology patients; understanding the impact of neurological illness on the patient and family; and learning about ways rehabilitation medicine can be used in the treatment of neurologic conditions. Students engage in direct patient contact with house staff and faculty supervision. Experiences are supplemented with lectures, workshops, and small group discussions. Prerequisite: successful completion of second year courses and a passing score on Step 1 of the United States Medical Licensing Exam. 4 s.h

NSCS*802J. General Neurosurgery. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Recognize clinical neurosurgical diagnoses and discuss their management issues in some of the most common neurosurgical disorders (subdural and epidural hematomas, head/spine trauma, hydrocephalus, AVM, etc.). 2. Perform a focused history and neurological exam for neurosurgical disorders. 3. Discuss basic neurosurgical approaches to common neurosurgical disorders, as well as the post-operative care and long-term management issues. 4. Understand the contributions and limitations of diagnostic imaging (CT, MRI) and neurophysiological testing (EEG, EMG/NCV) in patient assessments. 5. Discuss the non-surgical treatment of neurosurgical diagnoses and the common complications which might occur with/or without neurosurgical intervention. 4 s.h.

NSCS*803J. General Pediatric Neurology. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Develop effective clinical assessment and judgment skills, including recognition of clinical presentations of symptoms that are clinically worrisome and patterns of abnormal findings that are diagnostically important, and distinction between focal and generalized abnormalities. 2. Recognize symptoms that may reflect neurologic impairment:      a. Seizures or syncope.      b. Weakness or low muscle tone.      c. Spasticity or gait impairment      d. Headache or irritability      e. Abnormal movements or tics.      f. Sleep problems.      g. School or behavior problems. 3. Discuss the use of diagnostic procedures, i.e, MRI scan, EEG, CT scan, EMG/NCV, and neuropsychological testing, in patient care. 4. Discuss the use of treatment modalities, such as baclofen pump, vagus nerve stimulator, botox injections, in patient care.4 s.h.

NSCS*804J. Spine Neurosurgery. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Recognize clinically the common disorders of the spine. 2. Understand the various imaging modalities (MRI, CT) to evaluate spine disorders. 3. Perform the physical and neurological examinations of patients with spinal disorders. 4. Understand the various treatments (surgical and non-surgical) for the common disorders of the spine.4 s.h.

NSCS*805J. Behavioral Neur/Neurpsych. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Recognize patients with different types of behavioral and cognitive disorders. 2. Develop skills in performing a detailed mental status examination with the neurological examination. 3. Develop an appreciation for the advantages and limitations of neuropsychological testing. 4. Do in depth study of one neurobehavioral disorder with case presentation and written report on topic of interest. 5. Synthesize history, clinical examination, neuropsychological testing, neuroimaging, and other clinical information into a diagnostic and treatment plan for patients with a variety of behavioral and cognitive disorders.4 s.h.

NSCS*806J. Clinical Neurogenetics. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Discuss major topics in neurometabolic-genetic diseases. 2. Develop skills to identify and evaluate possible genetic neuro-developmental disabilities. 3. Know mechanics and application of neurometabolic-genetic diagnostic studies. 4. Participate in the presentation/counseling of an affected patient/family.4 s.h.

NSCS*807J. Geriatric Neuro/Neuropalliativ. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Discuss principles of palliative care as they apply to patients with life-limiting neurological diseases. 2. Discuss principles of geriatric medicine/neurology. 3. Understand principles of pain and symptom management Rationale for selecting specific medications and dosing requirements for the treatment of pain, dyspnea, delirium and other common symptoms will be introduced. 4. Understand hospice eligibility criteria for patients with terminal neurological diseases.4 s.h.

NSCS*808J. Neuro-Oncology. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Recognize, and diagnose the most common brain tumors. 2. Recognize the major types of tumors and various imaging modalities for CNS tumors. 3. Understand the general management of common tumors: gliomas, meningiomas, etc. 4. Know the pathology of CNS tumors and general grading schemes. 5. Discuss non-surgical treatment of the symptoms associated with tumors: seizures, high ICP symptoms (headaches, neurological deficits), etc. 6. Understand the contributions and limitations of diagnostic imaging (MRI, CT) and neurophysiological testing (EEG) in the assessment of brain tumor patients. 4 s.h.

NSCS*809J. Movement Disorders. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Understand the major issues related to movement disorders neurology. 2. Identify and evaluate movement disorder patients and to develop an appropriate management plan. 3. Understand surgical and injection-based interventions for movement disorder patients. 4. Exhibit improved physical/neurological examination skills while doing a complete neurological exam.4 s.h.

NSCS*813J. Neuromuscular Disease. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Know the anatomy and function of the peripheral nervous system. 2. Recognize diseases that cause abnormalities in nerve or muscle function including diseases of neuromuscular transmission. 3. Understand the concepts and utility of the electrodiagnostic testing performed in the evaluation of the peripheral nervous system. 4. Understand the multi-disciplinary approach to patients with chronic neuromuscular diseases.4 s.h.

NSCS*814J. Neuro-Ophthalmology. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Evaluate the patient for visual concern as they are related to Neurology. 2. Correlate the Neuro-anatomical evaluation with the ophthalmus and metabolic process. 3. Generate a rational differential diagnosis for neuro-ophthalmic diseases. 4. Structure a practical evaluation of the neuro-ophthalmic patient.4 s.h.

NSCS*816J. Neurovascular Stroke. At the completion of this clinical rotation, students will be able to:  1. Evaluate patients with stroke symptoms. 2. Develop a clinical care/management plan for stroke patients. 3. Understand principles of acute stroke treatment, including thrombolysis. 4. Ynderstand the contributions and limitations of diagnostic imaging (MRI, CT) in the assessment of stroke patients. 5. Understand primary and secondary stroke prevention.4 s.h.

NSCS*818J. Sleep Medicine. This is a junior selective. Students will evaluate patients with the complaint of excessive daytime fatigue and/or snoring.4 s.h.

NSCS*819J. Neurovascular Outpatient. This outpatient clinical stroke rotation is designed to give third year medical students an opportunity to interact with the Department of Neurology stroke faculty in an outpatient setting. Students will have the opportunity to learn stroke etiologies, diagnosis, treatment and management, secondary stroke prevention and stroke recovery, and management of post-stroke complcations. In addition, students will have the chance to learn about the MUSC REACH tele-stroke network. Students who are taking a neurology rotation for the first time will be required to take the NBME Neurology Shelf Exam and take call as described below.4 s.h.

NSCS*820J. General Neurology / Rehab Med. This selective introduces students to the care of patients with neurological disorders and conditions, as well as the role of rehabilitation medicine in improving patients' functional status and quality of life. Emphasis is placed on performing, documenting, and presenting histories and physical examinations of patients with neurological diseases; developing a differential diagnosis, assessment, and treatment plan; participating in the treatment of neurology patients; and understanding the impact of neurological illness on the patient and family. 4 s.h.

NSCS*841. Neurovascular Outpatient. The outpatient clinical stroke rotation is designed to give fourth year medical students an opportunity to interact with the Department of Neurology stroke faculty in a clinical setting. They will have the opportunity to learn stroke etiologies, diagnosis, treatment and management, secondary stroke prevention and stroke recovery, and management of post-stroke complications. In addition, students will have the chance to learn about the MUSC REACH tele-stroke network. Students who are taking a neurology course for the first time will be required to take the NBME Neurology Shelf Exam and take call as described below.5 s.h

NSCS*845. Neuro-Ophthalmology. The goals of the course are for the student to learn and apply neurology to the ophthalmologic system.  The student will be able to identify, and reasonably recognize and determine objective indications for visual concerns in patients. The student will learn to use common ophthalmologic tools.Var 2.5-5  s.h

NSCS*851. Pediatric Neurology. This elective focuses on commonly seen pediatric neurology problems seen in an outpatient setting. Students are first to evaluate the patient and their families as they work in a daily partnership with one of more pediatric neurology faculty attendings. Emphasis is on mastering the fundamentals of history-taking and patient assessment and on learning patient care approaches for common neuro-developmental disorders. Examples include seizures, migraine, motor or language delay, cerebral palsy, head injuries, tic disorders and sleep disorders. Hours are approximately 8:00 AM to 5:30 PM.Var 2.5-5 s.h.

NSCS*852. Gen Neurosurg Externship ASE. This neurosurgery externship will provide exposure to all facets of neurosurgery, both pediatric and adult. Students will have the opportunity to provide outpatient and inpatient pre-operative and post-operative care in the clinic and hospital setting. Through didactic teaching, care of patients in the clinic and hospital, and direct observation of neurosurgical procedures, students will become familiar with common neurosurgical disorders and methods of treatment at all ages. Students will be expected to have an on-call schedule similar to a PGY-II neurosurgical resident.5 s.h.

NSCS*853. Pediatric Neurosurgery ASE. Pediatric neurosurgery diagnoses and treats disorders of the nervous system through surgical means in patients up to eighteen years of age. Students participating in a pediatric neurosurgery elective will gain experience through didactic neurosurgery conferences, assisting the physician in both outpatient clinic visits and inpatient care in the hospital, and through observation of surgical procedures.

NSCS*854. Vascular Neurology (Stroke). Students will be exposed to clinical neurovascular (stroke) patients to acquire a basic knowledge of the clinical examination and patient interviewing, vascular risk factors for stroke and neuro-imaging (CT, MRI, TCD, etc.). Academic opportunities will be presented from shadowing the attending on wards, stroke clinic, research meetings/conferences, as well as at least two (but more if possible) open or endovascular surgical procedures arranged by the course director. Student will learn about evidence-based clinical study design and journal article review. Student will be introduced to the REACH-MUSC telemedicine program.5 s.h.

NSCS*856. Behavioral Neurology. Observe a variety of cognitively impaired patients in a clinical setting at MUH and the VA. Observe neuropsychological testing and better understand its application. Participate in a directed reading targeted to your interests and needs.5 s.h.

NSCS*858. General Adult Neurology. Students will gain skills in performing a neurological examination and evaluation. Clinical/Anatomical correlates will be stressed. The student will be introduced to a variety of neurodiagnostic tests, particularly MRI, lumbar puncture and EEG. This experience will take place on either an inpatient service or an inpatient consult service. This rotation will be evaluated by direct observation of clinical skills by the Attending. NOTE: The Clinical Core Neurology Shelf exam will be offered to those who have not previously taken it.5 s.h.

NSCS*859. General Adult Neuro Externship. Exposes the student to intern level responsibilities for patient care. Allows the student to perform clinically while under close supervision. Experience occurs on a hospital inpatient service. Students will be expected to work-up and evaluate patients, present cases to an attending physician, and participate fully in all aspects of patient care. Teaching will emphasize clinical/anatomical correlations as well as other aspects of professionalism in patient care. The Clinical Core Neurology Shelf exam will be offered to those who have not previously taken it.5 s.h.

NSCS*860. Neurosciences ICU Externship. This Neurosciences ICU externship will provide students with a thorough understanding of basic general critical care and neurocritical care concepts. The students are expected to read the syllabus that is provided to them. Students are expected to learn the fundamentals of resuscitating patients with severe acute neurologic injuries. Students will become familiar with airway management issues, respiratory management, circulatory support, management of increased intracranial pressure, and management of comorbid conditions seen in patients with acute neurologic injury. Students will be expected to become familiar with all critical care issues and instructed on imaging interpretation as it pertains to ICU patients. Students will participate in hands-on procedures under close supervision and will be expected to have an on-call schedule similar to a PGY-II neurology resident. Var 2.5-5 s.h.

NSCS*862. Spine Neurosurg Externshi ASE. This neurosurgical externship gives students a first-hand look at the challenges and rigors of neurosurgery, with a focus on surgery of the spine. Students will attend didactic neurosurgery conferences in the Department of Neurosciences, will participate in the diagnosis and treatment of patients in the outpatient clinic setting, and will assist in the care of patients in the Neurosciences ICU. Students will observe surgical procedures and will be expected to have an on-call schedule similar to a PGY-II neurosurgical resident.5 s.h.

NSCS*863. Neurogenetics. Students will have contact with pediatric and adult outpatients as well as neurogenetic clinical research work at the Greenwood Genetic Center in North Charleston, SC and, if special arrangements are made, at the main office of the Greenwood Genetic Center in Greenwood, SC. Var 2.5- 5 s.h.

NSCS*900A. Neurology Elective. This rotation includes all non-MUSC pre-approved electives for 4th year students. Var 2.5-5 s.h.

NSCS*901A. Neurosurgery Elective. This rotation includes all non-MUSC pre-approved electives for 4th year students.Var 2.5-5 s.h.

NSCS*970. Research. Research. Variable 1-15 s.h.

NSCS*980. Thesis. Thesis. variable 1-15 s.h.

NSCS*990. Dissertation. Dissertation. Variable 1-15 s.h.

PATH*900E. Pathology Externship. This rotation includes all non-MUSC pre-approved externships for 4th year students.Variable 2.5-5 s.h.

PATH*970E. Pathology Research. Research based elective for 4th year medical students.Variable 2.5-5 s.h.

PATH*700. Seminar in Pathobiology. This seminar course encompasses scientific presentations primarily from the two research foci of the department-cancer biology and neurobiology-in addition to other closely related research areas of interest. The seminar course serves several purposes: 1). To allow students in the department to gain experience in developing and enhancing their presentation skills, 2). To keep the department abreast of the scientific progress of the students' research, and 3). To enrich the progression of the students' research by receiving helpful comments from members of the department (fellow students, postdoctoral fellows and faculty members). Furthermore, the students and postdoctoral fellows are able to choose a total of 5 outside speakers per school year (Two are selected by the graduate students, two are selected by postdoctoral fellows, and one is selected by the graduate students with the assistance of the postdoctoral fellows to be a Dean's Seminar Series Speaker). In addition, the seminare series also includes presentations from departmental junior faculty and MUSC faculty from other departments whose research interests overlap with those of the Pathology & Laboratory of Medicine department. Graduate students are required to anonymously critique the presentations of their pears for class credit. 1 s.h.

PATH*730. Princip Targeted Cancer Drug. As we enter the age of personalized medicine strategic choices for therapies can be made based on the identification of the molecular parameters determined by profiling a patient's tumor. This course seeks to explain this principle. 3 s.h.

PATH*790. Laboratory Research Problems. Offers the student an opportunity to rotate through various laboratories in the Department of Pathology and Laboratory Medicine and investigate different research problems and learn different techniques ongoing in the Department. Variable .5-15 s.h.

PATH*792. Anat/Histo & Histopath/Lab Mo. This three credit hour course is offered as an elective course during the first three weeks of the summer semester. The anatomy, histology, and histopathology of the laboratory mouse will be presented. Emphasis will be placed on differences between human and mouse so future investigators who may use a mouse model of a human disease will understand approaches to developing new models as well as limitations of a given model.  Lectures will present anatomy, histology, basic principles of pathology and unique mouse pathology.  Lab sessions will be used to demonstrate the proper way to perform a pathological examination on properly euthanized animals.  Tutorials using glass and virtual slides will be included. Students will learn and execute a necropsy (term for post-mortem examination in veterinary medicine) of the mouse.  Two Genetically Engineered Mouse (GEM) models will be introduced by Drs. Awgulewitsch and Spyropoulos at the end of the course to reinforce the significicance of understanding differences between mouse and human anatomy, histology and pathology.  Due to the brevity of the course, only a limited number of pathological entities will be included.  Lectures (12 hours) will be Monday - Thursday.  Six, 2 hour Labs (12 hours) - Wednesdays and Fridays.  Course contact time is 28 hours (inclusive two 2 hours exams).  Time for independent study of virtual slides is estimated to be 6 hours/week, total 18 hours. 3 s.h.

PATH*856. Forensic & Med Autopsy Path. This course provides the student with hand-on experience in the postmortem examination of decedents in both the medicolegal and hospital setting. This experience is gained by functioning as an integral part of the autopsy team. The team is responsible for all aspects of the postmortem examination, including collection of historical and clinical information, external examinations with interpretation of findings (both medical and traumatic), dissection of procured organs, appropriate specimen collection for ancillary studies (including toxicology, cultures, etc), correlation of pre- and postmortem findings, and proper completion of death certificates. Students are expected to take call for one weekend and deliver a 5-10 minute presentation on a subject of his/her choice. Biweekly educational conferences occur as the schedule permits.Variable 2.5-5 s.h.

PATH*860. Cytopathology. This course will introduce students to cytopathology. The students will be involved with the evaluation of gynecologic and non-gynecologic cytology preparations. Students will participate in fine needle aspirations of superficial lesions and with the adequacy evaluation of fine needle aspirations performed by imaging services.Variable 2.5-5 s.h.

PATH*862. Surgical Pathology. This course will introduce students to surgical pathology. Students will be exposed to gross and microscopic pathology. Students will be exposed to intraoperative frozen sections. The course will be designed to meet the student's ultimate career interests. Variable 2.5-5 s.h.

PATH*865. Dermatopathology. The student will participate in the daily readouts of skin pathology specimens and in self-study of teaching sets.  The student will also participate in the daily teaching conferences in the Department of Dermatology including the Clinicopathologic Conference and the Dermatopathology Conference. 2.5 or 5.0 Variable credit hours.

PATH*870. Pathology As a Career. The student will rotate with a senior pathologist on various rotations including surgical pathology, cytopathology, autopsy pathology and clinical pathology.  Designed for students who are considering a career in pathology. 5 s.h.

PATH*871. Hematopathology & Medicine. This course is designed to provide the student an opportunity to participate in the laboratory evaluation and diagnosis of malignant and non-malignant hematologic disorders. The student will be involved in the morphologic, histochemical and immunohistochemical, immunophenotypic, cytogenetic and molecular analyses of peripheral blood smear, bone marrow aspirate and biopsies and lymph node biopsies. Correlation of these data with the clinical history and physical findings will be emphasized. Variable 2.5-5 s.h.

PATH*885J. Hematopathology/Flow Cytometry. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Learn to use a multidisciplinary approach to the diagnosis of hematologic malignancies utilizing morphology, immunophenotyping, cytogenetics and molecular analysis including Fluorescent In-Situ Hybridization (FISH) and Polymerase Chain Reaction (PCR) 2. Distinguish between acute and chronic leukemias and determine cell lineage and any associated chromosomal abnormalities based on morphology, immunophenotyping and genetic analyses. 3. Distinguish between benign and malignant plasma cell hyperplasias utilizing clinical correlation, classical immunoelectrophoresis and immunofixation techniques in chemistry, bone marrow analysis and cytogenetics. 2.5 s.h.

PATH*886J. Surgical and Cytopathology. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Understand the process by what a pathologic (histopathologic or cytpathogic) specimen is processed in the laboratory before it is available for examination by the pathologist. 2. Understand the role of intraoperative frozen section consultation in operative patient care. 3. Understand the role and utility of fine needle aspiration in workup and diagnosis of mass lesions. 4. Understand the relative utility of histologic and cytologic diagnostic techniques in the management of patient care. 5. Recognize the role of the pathologist in overall patient care through interactions with clinical colleagues. 2.5 s.h.

PATH*888J. Forensic Pathology. LEARNING GOALS AND OBJECTIVES: At the completion of this clinical rotation, students will be able to:  1. Identify factors that define a forensic or medicolegal case. 2. Perform external examinations prior to autopsy in order to properly document identifying characteristics and injuries. 3. Prepare paperwork specific to forensic pathology including evidence transfer, clothing documentation, toxicology request forms, data sheets, etc. 4. Perform autopsy procedures and protocols including sexual assault examination, sample procurement, and basic dissection and evisceration technique. 5. Perform uncomplicated autopsy organ dissection. 2.5 s.h.

PATH*900A. Pathology Elective. This rotation includes all non-MUSC pre-approved electives for 4th year students.Variable 2.5-5 s.h.

PATH*970. Research. Research. Variable 1-15 s.h.

PATH*980. Thesis. Thesis. Variable 1-15 s.h.

PATH*990. Dissertation.  Dissertation. Variable 1-15 s.h.

PCOL*601G. Pharmacology Core. Presents important concepts and principles regarding the proper therapeutic application of all major drug categories. Familiarizes the student with the history, source, physical, and chemical properties of drugs; their biochemical, physiological, and toxicological effects; and their mechanisms of absorption, distribution, action, biotransformation, and excretion. Emphasis is placed on problem-solving through a critical evidence-oriented approach. 9 s.h.

PCOL*621G. Dental Pharmacology. Demonstrates general principles of drug action, efficacy, and safety of pharmacologic agents and covers the application of these principles to the major drug classes. 4 s.h.

PCOL*621. Pharmacology. Teaches the fundamental principles and concepts of pharmacology. In the broad sense, this course is a study of the selective biologic activity of chemical substances on living matter. It presents the principles of drug absorption, distribution, and metabolism, the concepts of drug-receptor interaction, and the therapeutic uses and mechanisms of action of prototype drugs in each major drug group. 4 s.h.

PCOL*625. Human Physiology. This course in human physiology is designed to utilize basic physiologic concepts towards understanding the integrative nature of organ and whole body function. The fall semester presents integrated concepts of 1) Cell membrane structure and function including transport processes, receptors/signaling and electrophysiology; 2) muscle types emphasizing excitation and contractile processes; 3) autonomic nervous system organization and function; 4) regulation and maintenance of cardiovascular and respiratory function; 5) laboratory exercises on the electrocardiogram (ECG) and pulmonary function testing (PFT). 4 s.h.

PCOL*720. Introduction to Pharmacology. This course develops the ability of the student to understand, interpret and integrate current and classical research studies in the pharmacological sciences through readings and discussions with a diverse group of faculty. 3 s.h.

PCOL*721. Principles of Pharmacology.   This course develops an understanding of the principles required for conducting research studies involving the use of pharmacological agents as tools for understanding basic biological processes. The course covers basic principles of receptor theory, analysis of dose-response relationships, data interpretation,  and the relationship between the chemistry of biological molecules and their cellular actions. These principles are developed in relation to departmental research tracks in signal transduction/cancer biology, functional genomics, cardiovascular biology and drug metabolism/toxicology.  The course will impart an essential understanding of how pharmacological agents interact with living systems and how such actions are examined from an experimental point of view.  4 s.h.

PCOL*724. Pharmacology and Medicine. Using a topical approach, weekly sessions will go from didactic introduction to in-depth discussion of the pharmacologic principles necessary for understanding and studying the areas covered.3 s.h.

PCOL*725. Adv Top in Cell Signalling. The vast majority of human diseases involve defects in cellular communication and therapeutic intervention often targets molecules involved in cell signaling. This course will dissect signaling cascades and their alterations in disease states addressing cutting edge issues. The course will be offered each Fall with the theme rotating among three broad topics: Cell Signaling in the Cardiovascular System, Cell Signaling in Cancer, Cell Signaling in the Nervous System.  Specific diseases under these broader categories will be selected by faculty or students and then each disease will be dissected by one of the course participants (oral/written) to understand how signaling events are affected, how signaling dysfunction contributes to the onset or progression of the disease and how signaling events might be targeted in a therapeutic attack on the disease. The course is intended for advanced graduate and postgraduate students and will be coordinated with the Cell-Signaling Seminar Series (organized through the Department of Pharmacology) held each Fall, thus allowing seminar speakers to participate in the course. 3 s.h.

PCOL*726. Mass Spectrometry & Proteomic. This course will examine basic principles of mass spectrometry as well as instrumentation and applications with an emphasis on the analysis of biomolecules. In addition, the course will provide detailed coverage of proteomics analysis including techniques, quantitative strategies, applications and bioinformatics analysis approaches. 3 s.h.

PCOL*731. Mass Spectro/Proteo Jrnl Club. This will be a journal club counting for 1 credit hour. Each student will be required to lead a discussion (approx. 45 min.) on at least one journal article published within the last calendar year covering one or more of the following topics: 1) protein mass spectrometry or large-scale proteomic studies; 2) advances in instrumentation, methodology, or software employed for protein characterization and analysis; 3) quantitative -omic strategies; 4) computational proteomics; 5) bioinformatics analysis. The presentation will be followed by a 15 min. question and answer session, and all journal club members will be encouraged to ask questions during the presentation as well. It is expected that, through this format, the student will gain an understanding of traditional proteomics methodology and recent technological advances which are driving the field of proteomics-based biology. This will be assessed by evaluating the student's written critique (through provided journal article worksheets) of the proteomics methodology applied in the relevant studies reviewed weekly. 1 s.h.

PCOL*735. Advanced Biochemisty. A number of fundamental biochemical concepts and approaches provide the basis of all biomedical research. This course is designed to help students master these key techniques and associated theories to study the structure and function of proteins, nucleic acids, and lipids at the molecular level. The overarching goal is that students will be equipped to undertake such approaches during their graduate research. 3 s.h.

PCOL*736. Cellular Defense Against Forei. This course will provide an understanding of the role of intestinal and other epithelial cells as the body's barriers against foreign chemicals. This includes how transporters in the cell membranes are handling cytotoxins and carcinogens, but also drugs and dietary chemicals.  This also includes how xenobiotic metabolizing enzymes within the cells are capable of inactivating such chemicals.  These enzymes can, however, also result in bioactivation and binding to proteins and DNA, triggering cytotoxic and carcinogenic actions. The balance between all of these processes determines whether adverse reactions to chemicals will occur.  These processes, however, also limit the availability of novel therapeutic drugs, a challenge that can be overcome in various ways.  The course will cover the impact of these processes on cultured cells as well as the whole organism, including mammalian, particularly human, as well as marine organisms. Prerequisites: BMB-602G, PCOL-734. 3 s.h.

PCOL*740. Organ Systems Toxicology. The course will provide an overview of the toxic effects of drugs and xenobiotics on the function of individual organ systems.  The pathological changes for each organ system will be reviewed and the specific cellular targets of the chemicals and the overall mechanisms of action will be presented and discussed. Prerequisite: PCOL-736. 3 s.h.

PCOL*743. Cancer Cell Signaling. The basic Hallmarks of Cancer defined as sustained proliferative signaling, evasion of growth suppressors, resisting cell death, avoiding immune destruction, enabling immortality, invasion and metastasis, and deregulation of cellular energetics are all driven by protein-to-protein signaling. This course will discuss broad discoveries that have shaped the field of cancer cell signaling and provide an overview for how these signaling processes pertain to modern cancer research. This course is offered to students that have successfully passed first year courses. 1 s.h.

PCOL*744. Topics Cell Signaling. Current and emerging topics in celluar signaling will be presented and discussed in a journal club-style format. Students will present topics related to cellular signaling using faculty-approved articles from peer-reviewed journals, and will be expected to actively participate in the discussion with other students, post-doctoral fellows and faculty members. 1 s.h.

PCOL*747. Topics in Cancer Research. Two presentation formats will be used for the course. Initially, a faculty member will introduce and direct students in the discussion of selected literature concerning a single topic. Subsequent topics will be presented by individual students in Journal Club style. Each student will have two oppoetunities to present selected during the course and will be active discussants when other students present. Prerequisites: Completion of 1st year core curriculum Credits: 3 (Honors/Pass/Fail)

PCOL*751. Research in Pharmacology. Students work with faculty investigators, participating in research projects in basic and/or clinical pharmacology. Depending on the stage of advancement and desire of the individual, the student chooses their own project or participates in a project already in progress. In either case, the student has close supervision from one or more faculty members. Arrangements for a research elective must be made with the individual faculty member under whom the student wishes to study. The student receives a grade on the basis of faculty observation of performance and a written paper on the research project. 5 s.h.

PCOL*753. Redox Reg Oxidat Stress Seleno. This is a specialized course in the field of redox biology. Organized by MUSC with the support of the SC COBRE program, the course also features faculty and students from the Karolinska Institute, Stockholm, Sweden, and the University of Nebraska-Lincoln Medical Center. 2 s.h.

PCOL*970. Research. Research. Variable 1-15 s.h.

PCOL*980. Thesis. Thesis. Variable 1-15 s.h.

SPTOP*736. Laboratory Animal Science. This is a graduate level laboratory animal science class covering the basics of performing research involving animals.  We will cover regulatory aspects, normal biology, common diseases, and hands-on technique labs.  Lectures will present the ethics of animals in research, laws and regulations involved in animal research, IACUC structure and function, biology and background of rodents and large animals, animal models, clinical signs, anesthesia, surgical methods, pain management, and euthanasia.  Classes meet Thursday from 2-4 pm, and occasionally from 1-3 pm (see schedule).  The sessions are such that the 1st hour will be dedicated to didactic lecture with the 2nd hour consisting of discussion of pertinent literature resources to be provided.  There are 2 hands-on labs in this course in which students will be taught to perform basic rodent handling techniques, venipuncture and injections in rodents. Var 2-3 s.h.